USDA NASS Geospatial Data

Patrick Willis National Agricultural Statistics Service

"... providing timely, accurate, and useful statistics in service to U.S. agriculture."

Who is NASS?

- statistical survey agency of the USDA
 - non-political
 - non-policy making
 - independent-objective-unbiased
 - appraisers of U.S. agriculture

 collects and disseminates data on all facets of agriculture

Who uses NASS official statistics?

farmers

individual & corporate farmers growers' associations farmer cooperatives

agribusinesses

seed companies equipment companies chemical companies warehouse & storage companies transportation companies food processors feed processors other suppliers & buyers

economic firms

banks & lending institutions commodity traders insurance companies marketing firms

university researchers

government policy makers

media newspapers magazines radio television

Provider of timely, accurate, and useful statistics in service to U.S. agriculture

University of Illinois Research Park November 20, 2013

Spatial Analysis Research Section

Early limitations: Budget/Satellites/Technology

Source: National Agricultural Statistics Service (NASS), Crop Progress Report

Progress Year(s)

NASS

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

∩%

100%

80%

60%

40%

20%

0%

November

- 2013 ----- 2012 2008 - 2012

November

2011

2009

Winter Wheat

Spring Wheat

Alfalfa

Cotton

Sorghum

Rice

Oats

Barley

Oranges

Sunflower

Dry Beans

Durum Wheat

Sugarbeets

Potatoes

Sugarcane

Sod/Grass Seed

Almonds

Grapes

Apples

Rve Peas

Millet

Walnuts

Lentils

Pecans

Sweet Corn

Aquaculture

Other Crops

Cherries

Clover/Wildflowers

Dbl Crop WinWht/Com

Dbl Crop WinWht/Cotton

Dbl Crop WinWht/Sorghum

Canola

Peanuts

Fallow/Idle Cropland

Other Hay/Non Alfalfa

Dbl Crop WinWht/Soybeans

2011 Continental United States Land Cover Categories (by decreasing acreage) Agriculture Pasture/Grass Triticale Corn Citrus Mustard Sovbeans Safflower

Pistachios

Blueberries

Tomatoes

Onions

Herbs

Olives

Peaches

Tobacco

Prunes

Pears

Lettuce

Watermelons

Switchgrass

Straw berries

Pumpkins

Asparagus

Carrots

Squash

Cabbage

Peppers

Pomegranates

Hops

Mint

Cranberries

Cantaloupes

Flaxseed

1997 – 2007 Coverage:

CDL Basics

- Crop-specific land cover data layer
- Annual
- 30 meter spatial resolution
- GIS-ready
 - Georeferenced
 - Raster
- Interagency collaborations
 - Illinois Interagency Landscape Classification (IILC) Project
 - Illinois Department of Natural Resources (IDNR)
 - Illinois Department of Agriculture (IDA)
 - Foreign Ag Service (FSA), Satellite Image Archive
 - Farm Service Agency (FAS), Common Land Unit
 - US Geological Survey (USGS), National Land Cover Dataset

Purpose of the Cropland Data Layer (CDL) Program

The CDL program goals are:

1) Combine remote sensing imagery, USDA/Farm Service Agency reported data and NASS survey data to produce *supplemental*, unbiased independent acreage estimates for the state's major commodities.

2) Production of a crop-specific digital land cover data layer for distribution in industry standard formats.

Annual CDL states traditionally focused in the Midwest and Mississippi Delta States - Corn, Cotton, Rice, Soybeans, Winter Wheat

Corn

Soybeans

University of Illinois Research Park November 20, 2013

CDL 2013 Production

In-season
 acreage
 indications

University of Illinois Research Park November 20, 2013

Methodology

- "Stack" satellite imagery and ancillary data layers within a raster GIS
 30 meter grid cells, Albers Conic Equal Area projection
- Sample spatially from stack within known ground truth from FSA and NLCD
- Data-mine samples using Boosted Classification Tree Analysis to derive best fitting decision rules
- Apply derived decision rules back to input data stack
- Create land cover map
- Create probability map
- Assess map accuracy
- Derive acreage estimates

Methodology (continued)

- Satellite Imagery
 - Landsat 8, Disaster Monitoring Constellation (DMC)
 - NASA Terra MODIS 16-day composite NDVI
 - Past sensors (IRS ResourceSat-1 AWiFS, Landsat 5 & 7)
- Ancillary data layers
 - USGS National Elevation Dataset (NED)
 - USGS NLCD Impervious and Tree Canopy layers
- Ground Truth
 - Agricultural training & validation
 - Farm Service Agency (FSA) Common Land Unit (CLU)
 - Non-Agricultural training & validation
 - USGS 2006 National Land Cover Dataset (NLCD)
 - State-specific
 - USBR, WDA, UPGA, Gallo
- Software
 - Ground Truth Preparation: ESRI ArcGIS and SAS
 - Imagery Preparation: ERDAS Imagine
 - Decision-Tree Software: Rulequest See 5.0
 - Classification: NLCD Mapping Toolkit and ERDAS Imagine
 - Acreage Estimation: SAS

Satellite Sensors

	1999 - 2011	2006 - 2010	2011- Current	2013 - Current
	TM	<u>AWiFS</u>	DMC	<u>Landsat 8</u>
Equatorial crossing time	9:45 ± 15 minutes	10:30 ± 5 minutes	10:30 ± 5 minutes	10:00 ± 15 minutes
Temporal Resolution	16 days	5 days	2 - 3 days	16 days
Spatial Resolution	30 x 30 m (reflective) 120 x 120 m (thermal)	56 x 56 m	22 x 22 m (resampled to 30)	30 x 30 m (reflective) 100 x 100 m (thermal)
Radiometric Resolution	8 bit (256)	10 bit (1024)	10 bit (1024)	12 bit (4096)
Spectral Resolution	6 (B, G, R, NIR, SWIR, MIR) + Thermal IR	4 (G, R, NIR,SWIR)	3 (G, R, NIR)	10 (B, G, R, NIR, SWIR, MIR) + Thermal IR
Swath wide	185 km	737 km	600 km	185 km

2011 Available Imagery:

Landsat 5	3972 Scenes
DMC	1262 Scenes
Total	5234 Scenes

Ground Truth (20

Agriculture Ground Truth Provided by Farm Service Agency

USDA programs (crop subsidy, disaster relief) Program crops (may under report specialty crops) GIS-ready (less labor intensive for NASS)

Divide known fields into 2 sets

70% used for training30% used for validation

Old Ground Truth (1997 – 2006 CDLs)

June Agricultural Survey (JAS) – National in Scope

•41,000 farms visited, 11,000 one-square mile sample area segments

•Illinois ~ 400 segments statewide

~	GE 2	SECTION D	- CROPS/	AND LAND	USE ON IR	ACT	
١٥	w many acres are	inside this blue tract bour	ndary drawn on t	he photo (map)?			
l٥١	w I would like to a	sk about each field in side	this blue tract bo	undary and its u	se during 2000.		
	FIELD	NUMBER	01	02	03	04	05
	Total acresin field		828	828	828	828	828
	Crop or land use. [S	pecity]					
	Occupied farmstead	for dwelling	.843				
	Waste, unoccupied o structures, roads, dif	dwellings,buildings and thes, etc.					
	Woodand		831	831	831	831	831
_		rmanent (not in croprotation)	842	842	842	842	842
	Pasture Pen		•	•	•	•	
		onland (used only for neeture)	856	856	856	856	856
_	YII YII	Maru (used only or pasture)	-	007	057		957
	Ide cropiand - Ide al	during 2000	•	•	•	•	
	Two crops planted in crop.	this field or two uses of the same	DYes DNo	DYes DNo	DYes DNo	DYes DNo	DYes DN
	•	[Specify second crop or use]					
		Acres	844	844	844	844	844
Accessient to be nighted			610	610	610	610	610
1.	Acresingsted and to be imigsted [/f double cropped, include analysis of each crop introduct]		620 ·	620	620	620	620
5	Modern Marcad	Planted	540	540	540	540	540
,	(include cover crop)	For orgin or seed	.541	541	541	541	541
	Rve	Dianted	547	547	547	547	547
). 9.	(include cover crop) [Exclude ryegrass]	For grain or seed	548	548	548	548	548

Urban expansion on North Prospect Avenue 2004 CDL based on two Landsat scenes – April 4 & June 23

First year using AWiFS imagery in addition to Landsat, still using old maximum likelihood classifier and June Area Survey as ground truth

First year using new decision-tree based classifier, first year using Farm Service Agency (FSA) Common Land Unit (CLU) and the 2001 NLCD for ground truth

 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2011
 2012
 1999

Accuracy Assessment

USDA, National Agricultural Statistics Service, 2012 Illinois Cropland Data Layer STATEWIDE AGRICULTURAL ACCURACY REPORT

Crop-spe	cific	covers	only	*Correct	Accuracy	Error	Kappa
OVERALL	ACCUR	ACY**		651,381	92.8%	7.2%	0.865

Cover	Attribute	*Correct	Producer's	Omission		User's	Commission	Cond'l
Туре	Code	Pixels	Accuracy	Error	Kappa	Accuracy	Error	Kappa
Corn	1	394316	97.69%	2.31%	0.96	96.01%	3.99%	0.93
Rice	3	0	0.00%	100.00%	0.00	0.00%	100.00%	0.00
Sorghum	4	40	6.83%	93.178	0.07	67.80%	32.20%	0.68
Soybeans	5	241126	96.39%	3.61%	0.95	94.66%	5.34%	0.93
Sunflower	6	0	0.00%	100.00%	0.00	n/a	n/a	n/a
Topacco	11	0	0.00%	100.00%	0.00	0.00%	100.00%	0.00
Sweet Corn	12	86	33.86%	66.14%	0.34	84.31%	15.69%	0.84
Pop or Orn Corn	13	560	47.22%	52.78%	0.47	97.56%	2.44%	0.98
Barley	21	1000	0.00%	100.00%	0.00	0.00%	100.00%	0.00
Winter Wheat	24	1826	60.228	39./8%	0.60	/3.698	26.318	0.74
Dbl Crop WinWnt/Soybeans	26	11609	90.038	9.978	0.90	82.40%	17.60%	0.82
Rye	27	21	12.50%	87.50%	0.12	63.648	36.36%	0.64
Millet	20	21	13.0/5	100 000	0.16	20./05	43.248	0.57
Millet	29	076	0.00%	100.00%	0.00	n/a	n/a	n/a
Allalla	30	976	30.4/8	69.53%	0.30	59.628	40.38%	0.59
Other Hay/Non Allalia	37	239	7.048	92.96%	0.07	35.30%	64.708	0.35
Dry Beans	42	41	07.216	32./98	0.67	09.498	30.315	0.69
Potatoes	43	100	42.198	5/.81%	0.42	92.598	7.418	0.93
Other Crops	44	0	0.00%	100.00%	0.00	0.00%	100.00%	0.00
Watermelons	48	0	0.00%	100.00%	0.00	n/a	n/a	n/a
Cucumbers	50	3	30.00%	70.00%	0.30	/5.00%	25.00%	0.75
Peas	53	1	6.25%	93.75%	0.06	50.00%	50.00%	0.50
Herbs	57	14	25.93%	74.078	0.26	73.68%	26.32%	0.74
Clover/Wildlowers	58	29	10.74%	89.26%	0.11	/0./38	29.2/8	0.71
Sod/Grass Seed	59	4	3.928	96.08%	0.04	40.00%	60.00%	0.40
Switchgrass	60	0	0.00%	100.00%	0.00	0.00%	100.00%	0.00
Fallow/Idle Cropland	61	3	0.64%	99.36%	0.01	15.00%	85.00%	0.15
Peaches	67	0	0.00%	100.00%	0.00	n/a	n/a	n/a
Apples	68	0	0.00%	100.00%	0.00	n/a	n/a	n/a
Grapes	69	0	0.00%	100.00%	0.00	n/a	n/a	n/a
Christmas Trees	70	0	0.00%	100.00%	0.00	0.00%	100.00%	0.00
Wainuts	/6	63	46.328	53.088	0.46	90.00%	10.00%	0.90
Aquaculture	92	0	0.00%	100.00%	0.00	n/a	n/a	n/a
Iriticale	205	0	n/a	n/a	n/a	0.00%	100.00%	0.00
Cantaloupes	209	0	0.00%	100.00%	0.00	n/a	n/a	n/a
Peppers	210	0	0.00%	100.00%	0.00	n/a	n/a	n/a
Strawberries	221	0	n/a	n/a	n/a	0.00%	100.008	0.00
Squash	222	0	0.00%	100.00%	0.00	0.00%	100.00%	0.00
Dbl Crop WinWnt/Corn	225	6	4.03%	95.9/8	0.04	50.00%	50.00%	0.50
Dur Crop Vats/Corn	226	0	0.008	100.008	0.00	n/a	n/a	n/a
Pumpkins Dbl Crep MinMbt (Saurburg	229	231	2/.018 2/.018	44.398	0.55	90.398	20 220	0.91
DB1 Crop WinWnt/Sorghum	236	2	3.1/8	96.83%	0.03	00.0/8	33.338	0.6/
Dbl Crop Soybeans/Oats	240	- 0	20.00%	100.00%	0.00	n/a	n/a	n/a
Lourda Counda	241	17	30.08%	09.928	0.30	89.538	10.4/8	0.90
Gouras	249	1	10.00%	90.00%	0.10	100.00%	0.00%	1.00
DDI CTOP Bariey/Soybeans	254	0	0.00%	TOO.008	0.00	n/a	n/a	n/a

*Correct Pixels represents the total number of independent validation pixels correctly identified in the error matrix. **The Overall Accuracy represents only the FSA row crops and annual fruit and vegetables (codes 1-61,66-80 and 200-255). FSA-sampled grass and pasture, aquaculture, and all NLCD-sampled categories (codes 62-65 and 81-199) are not included in the Overall Accuracy.

Acreage not just about counting pixels Regression-based Acreage Estimator

Regression used to relate categorized pixel counts to the ground reference data

- (X) Cropland Data Layer (CDL) classified acres
- (Y) June Agricultural Survey (JAS) reported acres

Using both CDL and JAS acreage results in estimates with reduced error rates over JAS alone

Outlier segment detection correction or removal from regression analysis

PAGE 2 SECTION D	- CROPS AND LAND USE (DN TRACT 17			
How many acres are inside this blue tract bou	Indary drawn on the photo (map)?				
Field Number	01 02	03 04 05			
1. Total acresin field	828 828 828 828	828 828			
2. Croporlanduse.[Sp <i>ecify</i>]					
3. Occupied farmstead or dwelling					
 Waste, unoccupied dwellings, buildings and structures, roads, ditches, etc. 		······································			
5. Woodland	831 831 831				
6 Pasture Permanent (not in crop rotation)	842 842 842	842 842			
Croppind (used only for pasture)	856 856 856	856 856	and the second s		
8. Idle gropland - Idle all during 2000	857	857		97 1 1	
 Two crops planted in this field or two uses of the same crop. 	e ⊡Yes ⊡No ⊡Yes ⊡No ⊡Yes	3 ElNo ElYes ElNo	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	61 F 1	
[Specify second crop or use	844 844 844	844 844			
Acre:	s • • • • •				
 Acres left to be planted Acres inicated and to be inicated UK double connect. 	620 620 620	620 620	- 🐜		
include acreage of each crop ingated.]	540 540 540	540 540		10 and 10 a	
16. Winter Wheat Planted (include cover crop)	541 541 541	541 541			
17. For grain or seed	547 547 547	547 547			
18. Rve Planted	548 548 548	• • • • • • • • • • • • • • • • • • •			
19. For grain or seed		• • • • • • • • • • • • • • • • • • • •			
		$\boldsymbol{\gamma}$			
RI	EGRESSION	Dependent	Independent		
		·	I		
VA	ARIABLES:	V	X		
			Λ		
		Enumerated	CDI Classified		
		IAS Sogmonte	Acros		
		JAS Segments	Acres		
	Souhoanc	222	272		
Soybeans			213		
		227			
	wheat	33/	541		
CDL Metadata

• Detailed metadata files for each CDL state/year available online at:

http://www.nass.usda.gov/research/Cropland/metadata/meta.htm

Raster										
Attribute Domain Values and Definitions: ROW CROPS 1-20		CLACCT		TON TRIDU	TC.					
		AMIES	DATE	20080413	ір: ратн	264	POMISI	COUNDRANT (S)	35b 40d /	45bd
Categorization Code	Land Cover	AWIFS	DATE	20080418	PATH	265	ROW(S) ROW(S)	&OUADRANT(S)	35bd 40al	bod 45abd 49b
"1"	Corn	AWIFS	DATE	20080427	PATH	262	ROW(S)	QUADRANT(S)	40bd	
"2"	Cotton	AWIFS	DATE	20080428	PATH	267	ROW(S)	QUADRANT (S)	40d 45bd	
"3"	Rice	AWIFS	DATE	20080503	PATH	268	ROW(S)	&QUADRANT(S)	35bd 40b	cd 45abcd 49b
"4"	Sorghum	AWIFS	DATE	20080512	PATH	265	ROW(S)	QUADRANT(S)	40bcd 45	abd
"5"	Sovbeans	AWIFS	DATE	20080517	PATH	266	ROW(S)	QUADRANT(S)	35d 40bd	45b
"6"	Sunflowers	AWIFS	DATE	20080606	PATH	270	ROW(S)	QUADRANT(S)	40d 45b	
"10"	Peanuts	AWIFS	DATE	20080614	PATH	262	ROW(S)	QUADRANT(S)	35bd 40b	d 45b
"11"	Tobacco	AWIFS	DATE	20080625	PATH	269	ROW(S) Row(S)	QUADRANT(S)	40d 45b	50bd
"12"	Sweet Corn	AWIFS	DATE	20080629	PATH	265	ROW(S) Douvey	I &QUADRANT (S)	40ba 45b	4 51
12 //13//	Boncorn or Ornemental Corn	AWIFS	DAIL	20000704	PAIN	200	ROW(S) ROW(S)	COUNDRANT(S)	35a 40a 4	4500 Oebd 45b
13	Fopcorn of Ofnamencal Corn	AWIES	DATE	20000715	PATH	203	ROW(S) ROW(S)	LEOHADRANT(S)	35cd 40a	badu 45ebd 50b
Man Projection Name	: Albers Conical Equal Area	ANTES	DATE	20080802	PATH	2.67	ROW(S) ROW(S)	LEOHADRANT (S)	35d 40ab	nd 45abd
Albers Conical Equa) Area:	AWIFS	DATE	20080808	PATH	273	ROW(S)	COUADRANT(S)	35d 40bc	45a
Standard Parallel:	29.50000	AWIFS	DATE	20080812	PATH	269	ROW(S)	QUADRANT (S)	35c 40ac	45a
Standard Parallel:	45 500000	AWIFS	DATE	20080904	PATH	264	ROW(S)	&QUADRANT(S)	40bd 45b	d
Longitude of Centre	1 Meridian: -96 00000	AWIFS	DATE	20080909	PATH	265	ROW(S)	QUADRANT(S)	35bd 40b	d
Latitude of Project	ion Origin: 23 000000	AWIFS	DATE	20080914	PATH	266	ROW(S)	QUADRANT(S)	40d 45bd	
False Festing, 0.00	10n_011g1n. 23.000000	AWIFS	DATE	20080915	PATH	271	ROW(S)	QUADRANT(S)	45bd 50b	
False_Lasting: 0.00	00000									
Planer Condition T		MODIS	16 DA	Y NDVI CO	OMPOSI	TE D	ATE 20	0071016		
Planar_Coordinate_1	niormation:	MODIS	16 DA	Y NDVI CO V NDUI CO	OMPOSI	TE D	ATE 20	JU711U1		
Planar_Coordinate_E	ncoaing_methoa: row and column	MODIS	16 DA	Y NDVI CO V NDVI CO	OMPOSI	TE D	AIE 20 ATE 20	JU/111/		
Coordinate_Represen	itation:	MODIS	16 DA	Y NDVI CO	OMPOSI	TF D	AIE 20 ATE 20	0000303		
Abscissa_Resolution	1: 56	MODIS	16 DA	Y NDVI C	OMPOSI	TE D	ATE 20	000021		
Ordinate_Resolution	1: 56	MODIS	16 DA	Y NDVI C	OMPOSI	TE D	ATE 20	0080422		
Planar_Distance_Uni	ts: meters	MODIS	16 DA	Y NDVI C	OMPOSI	TE D	ATE 20	0080508		
Geodetic_Model:		MODIS	16 DA	Y NDVI C	OMPOSI	TE D	ATE 20	0080524		
Horizontal_Datum_Na	me: North American Datum of 1983	MODIS	16 DA	Y NDVI CO	OMPOSI	TE D	ATE 20	0080609		
Ellipsoid_Name: Geo	detic Reference System 80									
Semi-major_Axis: 63	78137.000000	USGS,	NATIO	NAL ELEV.	ATION	DATA	SET EI	LEVATION		
Denominator_of_Flat	tening_Ratio: 298.257223563	USGS,	NATIO	NAL LAND	COVER	DAT	ASET 2	2001 TREE CAN	OPY	
		USGS,	NATIO	NAL LAND	COVER	DAT	ASET 2	2001 IMPERVIC	USNESS	

Future of the CDL Program?

- Expand geographic scope?
 - Testing Hawaii in 2013
- Improved categories?
 - Grassland
 - Pasture/hay/grass
 - Specialty Crops
- Imagery?
 - Future sensors
 - Finer spatial resolution
- Derivatives?
 - Cultivated Data Layer (Crop Mask)
 - Crop rotation patterns
- Other ancillary data?
 - Soils
 - Climate
- Improved online distribution
 - CropScape

CDL Visualization, Dissemination and Querying Needs

- Prior Distribution Methods:
 - Online bulk FTP downloading via NRCS Geospatial Data Gateway
 - Online, telephone and mail requests:
 - Printed maps
 - CD/DVD delivery
- NASS Needed...
 - Capabilities for on-line geospatial crop information access, geospatial query and on-line analytics via interactive maps
 - Disseminate all data to decision makers and users via real time retrieval, processing and publishing over the web through standards-based geospatial web services

Solution - CropScape

- A web service based interactive map visualization, dissemination and querying system for U.S. cropland
 - No burden on users
 - No client software development & installation
 - No special software tools needed
- Collaboration with George Mason University/ Center for Spatial Information Science and Systems

National Agricultural Statistics Service 🔍 🔍 🕅 🖳 🥱 🤄 🗢 🗢 🔒 🖀 + 🔞 🗮 🗐 - 🥵 🛒 🖓 - 🌠 🚹 📲 - 🔞 💾 🔶 🛄 🕜 E Layers 🖃 😋 Background Layers 📃 🖲 Global Land Cover E O None 🖃 🔄 Cropland Data Layers E @ 2012 E C 2011 http://nassgeodata.gmu.edu/CropScape/ E C 2010 E C 2009 E C 2008 E C 2007 E C 2006 E C 2005 E C 2004 E C 2003 WA E C 2002 E C 2001 MI ND E C 2000 \Xi 🔿 1999 MN OR E C 1998 E C 1997 WI 🖃 🔂 🔲 Crop Mask Layer WY E Crop Mask Layer (2007-20' Boundary Layers PΔ E County NE E ASD E State UT G G Water Layers ſΑ E Rivers MO E Lakes B C Road Layers E Freeway System (National) TN E Major Highways (Regional) AR NM M 🗘 🗄 🗉

200 km 100 mi

E in

f

CropScape Functions

- Select any historical CDL by state and year circa 1997
- Zoom in/out & Pan
- Search by county and year
- Sub-setting by state, county, and year
- Sub-setting for any area of interest
- Re-projecting data to a user specified map projection

 Albers, Geographic, UTM
- Download the CDL subset in GeoTiff format
- Exporting selected CDL subset to Google Earth (KML)

CropScape Functions –Cont.

- Online pixel counting & acreage statistics
- Online statistics graphing/charting
- Maps showing the change of crop types for a state, county, or any area specified between any two years of CDL
- On-the-fly single/multi crop map generation, display and download
- Web service implemented
 - Geospatial query statistics data delivery
 - CDL map AOI data delivery

Copyright © General Science and Technology Solutions Inc. 2009 - 2014

f 🕒 in

Constrain MASON

CropScape Download & Export

CropScape "Mashups"

CropScape Future Improvements

• Additional GIS layers

- watershed, congressional districts

• More analysis functions

Improved map production/printing services

CropScape Google Analytics

Region	Visits	Pages / Visit	Avg. Visit Duration	% New Visits	Bounce Rate
	73,303 % of Total: 89.78% (81,650)	1.21 Site Avg: 1.20 (0.32%)	00:01:23 Site Avg: 00:01:21 (1.85%)	57.84% Site Avg: 58.66% (-1.40%)	86.33% Site Avg: 86.52% (-0.22%)
1. California	5,511	1.22	00:01:26	62.98%	85.18%
2. Illinois	5,018	1.21	00:01:24	59.65%	86.59%
3. Minnesota	4,962	1.15	00:01:03	52.58%	88.98%
4. Virginia	4,616	1.46	00:02:22	36.55%	83.71%
5. Iowa	3,270	1.20	00:01:27	58.01%	86.06%
6. Texas	3,253	1.20	00:01:20	54.75%	85.24%
7. Missouri	2,979	1.17	00:01:11	57.67%	88.02%
8. Colorado	2,438	1.19	00:01:27	53.57%	85.81%
9. Kansas	2,421	1.17	00:01:26	50.06%	87.40%
10. District of Columbia	2,375	1.18	00:01:02	62.15%	86.61%

CropScape Google Analytics

Country / Territory	Visits	Pages / Visit	Avg. Visit Duration	% New Visits	Bounce Rate
	81,650 % of Total: 100.00% (81,650)	1.20 Site Avg: 1.20 (0.00%)	00:01:21 Site Avg: 00:01:21 (0.00%)	58.69% Site Avg: 58.66% (0.04%)	86.52% Site Avg: 86.52% (0.00%)
1. United States	73,303	1.21	00:01:23	57.84%	86.33%
2. Canada	1,100	1.16	00:01:07	67.36%	88.36%
3. China	913	1.25	00:01:28	60.24%	82.58%
4. Germany	502	1.12	00:00:47	58.76%	91.24%
5. United Kingdom	441	1.15	00:01:02	64.40%	89.57%
6. Argentina	393	1.13	00:00:57	48.60%	91.09%
 7. France	388	1.25	00:01:30	62.11%	86.34%
8. Brazil	362	1.15	00:01:03	68.78%	87.85%
9. Spain	300	1.14	00:00:47	69.00%	90.00%
10. Mexico	291	1.19	00:01:37	54.64%	86.60%

Purpose of VegScape

- On-line satellite-based U.S. crop condition vegetation assessment and monitoring
- Improve objectivity, robustness, quantification, and defensibility of nationwide crop condition monitoring program
- Provide tools for data exploration and visualization
- Publically disseminate geospatial vegetation condition at daily, weekly, and biweekly time periods
- Supports ethos of data democratization
 - free and open access to digital geospatial data layers
 - open geospatial standards
 - supporting transparent and collaborative government initiatives

- 1995-2012
- NDVI Vegetative Condition
- Static Maps
- Based on AVHRR sensor (1.1 km spatial resolution)

FOIA | Accessibility Statement | Privacy Policy | Non-Discrimination Statement | Information Quality | Guidance Documents

University of Illinois Research Park November 20, 2013

- 2013
- VegScape web service
- Multiple vegetation indices
- Interactive web mapping: navigate, download, etc.
- MODIS sensor: daily repeat, 250m resolution (~15 acres /6.25 hectares)
- Composites: daily, weekly, bi-weekly

Built on CropScape framework/architecture

- Web-based interactive mapping
- Derive daily/weekly/biweekly composites
- Automated updates
- Online navigation, zooming, panning, downloading
- Hosted/maintained by George Mason University/Center for Spatial Information Science and Systems

Vegetation Indices

- The Normalized Difference Vegetation Index (NDVI) is used to measure and monitor plant growth, vegetative cover, and biomass production
- NDVI values range from 0 to 1, where higher values indicate stronger plant vigor and high chlorophyll content
 - Lower values indicate low vegetative content/plant heartiness
- Additional derivative vegetation indices can be displayed: Vegetative Condition Index; Ratio VCI; Ratio Median VCI; Mean VCI

Vegetation Indices

- NDVI Normalized Difference Vegetation Index NDVI = (IR - Red) / (IR + Red) = Shows greeness Healthy vegetation has high NDVI ratio values (1.0 max) low red light & high near-infrared reflectance values
- RNDVI -NDVI change ratio to previous year
- <u>RMNDVI</u> NDVI change ratio to median
- VCI Relative NDVI change with respect to minimum historical (referenced) NDVI value
- MVCI Mean referenced VCI (vegetation condition index)

Load VegScape Indices

1) Select vegetative index

Products	l
MVCI	*
NDVI	
VCI	
RVCI	
RMVCI	
MVCI	

2) Time period

5) Add

3) Year

4) Date

🔷 🛟 Add

Layers Products Legends

MT

WY

CO

3

NM

ND

SD

NE

TX

KS

OK

MN

IA

MO

AR

WI

IL.

MS

MI

KY

TN

AL

IN

OH

GA

ww

PA

NC

SC

FL

🔍 ् 🥎 🔍 🗞 🕴 🔾 🔕 💣 🗮 🧮 🗖 🔹 😨 🖓 🖓 🍪 🚳 🗳 👘 🕹 🚳 🖏

WA

NV

ID

UT

Δ7

OR

CA

RMVCI Legend <= -25% <= -15% <= -5% +/->= +5%

>= +15% >= +25% Legends

Layers

Products

🔍 ् 🥂 👯 🗞 🕴 🔾 🔕 💣 🗮 🧮 🗖 - 😨 - 🍃 - 🐷 📸 😼 🔛 🚣 -3020368.66056, 3311647.62786

RMVCI Legend

>= +15%

<= -15% <= -5% +/->= +5%

>= +25%

ME

MA

NY

PA

VA

NC

SC

FL

WV

Legends

Layers

Products

🔍 ् 🥂 👯 🗞 🕴 🔾 🔕 💣 🗮 🧮 🗖 - 😨 - 🍃 - 🐷 📸 😼 🔛 🚣 -3020368.66056, 3311647.62786

RMVCI Legend

>= +15%

<= -15% <= -5% +/->= +5%

>= +25%

ME

MA

NY

PA

VA

NC

SC

FL

WV

Legends

Layers Products

🗄 🦲 Basic Layers 🗉 🧰 🗂 CDL 🖃 🔄 🔽 Crop Mask

VegScape Layers/Products/Legends Tab

VegScape Summary

- MODIS offers high spatial/temporal resolution & data continuity
- Web-based dynamic interactive mapping
 - Online navigation, zooming, panning, downloading, on-the-fly processing
 - Leveraging CropScape framework/architecture
 - Automatic data retrieval, processing, publishing, and dissemination
- Irregular, ad-hoc data retrieval and processing for emergency assessment/reporting
- Assessing crop condition and identifying the areal extent of floods, drought, major weather anomalies, and vulnerabilities of early/late season crops
- Consider VegScape operational upon start of 2013 growing season!

RatioMedian VCI- Area of Interest Statistics

Weekly_RMNDVI_18_2011.05.03_2011.05.09 Data Layer Statistics for the Defined Area of Interest

🔎 🚔 🍓 🛛 🤩 💼 Note: Pixel and acreage counts are not official estimates.					
Value 🔺	Category	Pixel Counts	Acreage		
0	<=-25%	1931	25606.6		
1	<=-15%	19647	260535.3		
2	<=-5%	30411	403274.7		
3	+/-	184180	2442377.2		
4	>=+5%	57280	759579.6		
5	>=+15%	9910	131414.7		
6	>=+25%	1765	23405.3		
Total	7	305124	4046193.4		

04/19-04/25/11

Quantify vegetative area condition

Other Geospatial Products

- Remote Sensing Yield
 - NASS cooperative research for over 15 years
 - Agricultural Research Service
 - Dr. Paul Doraiswamy
 - Tech transfer
 - Semi-operational for 4 years
 - Primary data source MODIS sensor

Yield Methodology

- Utilizes NASS county-level yields as "ground truth"
 - 1. Farmer reported survey data
 - 2. Objective yield survey
 - 100s of sample sites per state
 - biophysical plant/seed measurements obtained
 - Each plot revisited a multiple times per season
- Over Speculative corn and soybean region
- Examining timely possible predictor variables
 - NDVI (Normalized Difference Vegetation Index)
 - derived from Terra satellite MODIS surface reflectance imagery
 - LST (Land Surface Temperature) from day and night
 - derived from Aqua satellite MODIS thermal imagery
 - Precipitation
 - derived from NOAA/NWS Nexrad
- Utilizing 8-day composited mosaic products from 2006-2011
 - Mid-February through late September
- Forecasting solely using Rulequest Cubist software

Reality check – detection of extreme weather events

Path of a large hailstorm

Future Geospatial Products?

Improve and quantize:
 – Crop Progress

- Soil Moisture
 - NASA Soil Moisture Active
 Passive (SMAP) mission

• Expand yield forecasting program

University of Illinois Research Park November 20, 2013

Questions?

University of Illinois Research Park November 20, 2013

Discussion Topic

- Beginning with the 2013 CDL we plan to collapse all grass/pasture categories into one new category
 - The old "land cover" versus "land use" issue
- Individual analysts decide how to use grass and pasture ground truth in their particular state/region/year – this has resulted in inconsistences at state boundaries
- Intended to reduce end user confusion
- CDL codes collapsed
 - 62 (FSA pasture and grass)
 - 171 (NLCD herbaceous grassland)
 - 181 (NLCD pasture/hay)
- Entire CDL archive will be recoded and re-released in early 2014

solely from the Cropland Data Layer

18	Several analyses have been undertaken recently to estimate possible land cover transition
19	in the United States (US) of grassland cover types to usage for planting commodity crops (Faber
20	et al., 2012; Johnston, 2013; Wright and Wimberly, 2013; Kline et al., 2013; Cox and Rundquist,
21	2013; DIS, 2013; AP?, 2013; Gibbs et al., 2013). All of the studies have used time-series
22	analysis of the Cropland Data Layer (CDL) (Johnson and Mueller, 2010; Boryan et. al., 2011) as
23	produced by the United States Department of Agriculture (USDA) National Agricultural
24	Statistics Service (NASS) for the basis. The consensus of the findings is that cropland has indeed
25	expanded in recent years onto grassland areas. The cause of this conversion is then ultimately
26	tied to economic or policy change, particular in terms of com (commonly called maize outside of
27	the US). The overall concern of these conversions is that they are likely occurring on marginal
28	lands and negatively impacting ecosystems at a variety landscape scales. The purpose of this
29	communication is not to confirm or rebut any of the individual findings but put into historical
30	perspective the development of CDL, caveat the utility of using it for area estimation
31	(particularly for non-crop types) and propose a path forward for clarity of mapping grassland

32 related cover types.

2

