Feasibility of spatial resolution and herbaceous category improvements to the Cropland Data Layer

David M. Johnson Geographer

National Agricultural Statistics Service United States Department of Agriculture

> May 3, 2011 ASPRS Annual Conference Milwaukee, Wisconsin

CDL generalities

- Annual land cover classification targeted to identifying *circa* summer cultivated crops
- Encompasses (since 2009) all of conterminous USA
- 56m or 30m resolution
 - Depending on year
- Derived primarily from
 - Landsat-5 TM
 - Resourcesat-1 AWiFS
- Built with a supervised classification tree methodology
 - Implemented with See 5.0 via ERDAS Imagine
- Utilizes ground/training data from USDA Farm Service Agency and ancillary data from National Land Cover Database
- Highly robust for dominant crop types
 - corn, soybeans, wheat, rice, cotton, etc.
- Used internally by NASS to estimate state and county–level acreage

CDL access

- Traditionally through DVD, FTP, or the USDA Geospatial Data Gateway
- Now easiest is the "CropScape" portal
 - nassgeodata.gmu.edu/CropScape
 - or just Google "CropScape"

Two of the bigger user questions about CDL

- Can you improve the spatial resolution?
 - 56m is too coarse
 - 56m is not"standard"
- Can you better define and accurately map herbaceous categories?
 - Pasture, hay, grasslands, Cropland Reserve Program (CRP), native grasses, rangeland, etc...

North Dakota as a study area

- ND is nice to analyze because
 - Large diversity
 of major
 commodity
 crops
 - Large diversity of grassland usages

Question #1: Finer spatial resolution?

- All CDLs, to date, are either 30m or 56m resolution
 - Based on the primary data source
 - If Landsat TM, or ETM, then 30m
 - If Resourcesat AWiFS then 56m
 - Earlier CDLs (early 2000s) were 30m
 - More recent CDLs (late 2000s) were 56m

56m

NW North Dakota

30m

- 2010 originally planned and processed at 56m but ultimately reprocessed and released at 30m!
- Accuracy (pixel level) of cropped areas: 56m = 78.1%, 30m = 80.5%
- In terms of NASS derived area estimates 56m v. 30m perform about the same

Finer than 30m resolution?

- What about 20m, or 10m, or 5m resolution?
 - Number of sensors currently producing finer resolution data with multispectral capability
 - SPOT, LISS-III, DMCii, DEIMOS, RapidEye etc...
- For 2010 large US Federal data buy of SPOT imagery
 - Targeted over growing areas but covering most of US.
 - Freely distributable to Federal agencies via USGS EarthExplorer
 - Imagery not ortho-rectified but reasonably well geo-registered
- So SPOT best candidate for higher resolution land cover mapping...

Areal comparison

SPOT 4 North Dakota 2010 summer collects

149 scenes (20m resolution)

SPOT 5 North Dakota 2010 summer collects

52 scenes (10m resolution)

Areas with at least two SPOT 5 scenes

Areas with at least three SPOT 5 scenes

Visual comparison ("false natural color")

SPOT 5

Landsat TM

USDA/NASS

Notes about ground data

- Agricultural categories
 - Use Farm Service Agency farmer reported "578" program crop tied to Common Land Unit (CLU) polygon data
 - Early in the season this information is thin
- Non-agricultural categories
 - Draw samples from the NLCD to act as proxy ground truth
- Ultimately draw hundreds of thousands of sample from both across a state and use in supervised decision tree type classification
 - Perhaps 1 10 % agricultural ground truth coverage early in the season
 - Grows to 20, 30, 40%, or more, as season evolves
- Made even more robust with knowledge that classifier is tolerant of outliers/errors

NLCD

FSA

Three SPOT scenes and output classification

Classifications compared

17

Second area - RapidEye analysis

RapidEye classification

- Single scene
 - August 9th
 - not "multitemporal"
 - Reasonable
 nonetheless

Canola

Barley

Peas

Sunflowers

Dry Beans

Winter Wheat

Alfalfa

Flaxseed

Lentils

Oats

Sugarbeets

Fallow/Idle Cropland

RapidEye 5m classification versus raw

R = NIR band G= "red edge" band B= red band

RapidEye classification versus 30m CDL

- Single date of 5m data seems to perform well
- Obvious improvements with detail
- "Red-edge" band may indeed be yielding additional information

30m

Spatial resolution improvements conclusions

- National 30m, the new NASS standard
- May be possible to go finer but unlikely in the near future
 - Incomplete multi-temporal coverage
 - Exponential data handling needs
 - downloading, storage, and processing
 - Little to gain in area statistics improvement
 - Lack of ortho-registation with US SPOT data buy
 - Albeit SPOT 5 is probably close enough, especially if used in conjunction with coarser (e.g. Landsat) data.

 Hindrance with no "bulk download" capability at USGS like for Landsat data

Question 2: Herbaceous classification

- NASS CDL nomenclature would generally call these
 - 1. Hay (excluding alfalfa)
 - 2. Pasture
 - 3. Non-agriculture, grassland, waste, idle, ...
 - These have been poorly defined and/or inconsistent through the years
- FSA provides information about 5 grass usage types
 - 1. "Forage"
 - 2. "Grazing"
 - 3. "Left Standing"
 - 4. "Seed"
 - 5. "Sod"
- Trying to force into cover type versus usage one could say
 - 1. Cut grass
 - 2. Chewed grass
 - 3. Undisturbed grass
 - 4. Seed grass
 - 5. Sod grass
- Also there is FSA information about CRP and cover type/usage
 - Not all CRP is grassy!

North Dakota 2010 accuracies

Crops average = 80.5%

CLASS		Correct	Producer	User	Bias
Corn	1	668556	91.00%	95.24%	-4.5%
Sorghum	4	3197	45.02%	82.76%	-45.6%
Soybeans	5	1365715	95.43%	95.89%	-0.5%
Sunflowers	6	313862	89.05%	93.17%	-4.4%
Barley	21	107277	52.92%	84.31%	-37.2%
Durum wheat	22	829926	77.91%	82.09%	-5.1%
Spring wheat	23	2691720	90.99%	88.53%	2.8%
Winter wheat	24	140939	84.35%	91.78%	-8.1%
Oats	28	36453	37.80%	78.48%	-51.8%
Canola	31	462926	94.10%	97.28%	-3.3%
Flaxseed	32	89174	67.56%	87.57%	-22.9%
Alfalfa	36	163644	49.71%	75.04%	-33.8%
Other hays	37	329416	41.26%	71.61%	-42.4%
Beets	41	24110	91.74%	96.02%	-4.5%
Dry beans	42	142142	84.76%	88.18%	-3.9%
Potatoes	43	25503	75.52%	93.13%	-18.9%
Lentils	52	129723	88.34%	90.67%	-2.6%
Peas	53	168639	84.74%	89.25%	-5.1%
Idle / Fallow	61	80903	46.30%	87.81%	-47.3%

Hay/forage accuracies for all states 2010

STATE	PRODUCER'S ACCURACY	USER'S ACCURACY
AL	43.0%	29.5%
AZ	47.0%	80.5%
СА	42.9%	57.8%
CO	39.9%	80.8%
FL	43.6%	42.7%
GA	33.7%	51.3%
IA	11.2%	42.9%
ID	38.3%	67.5%
IL	7.0%	43.9%
IN	10.4%	43.7%
КҮ	43.2%	51.5%
MD,DE,NJ	66.1%	60.6%
ME,MA,CT,RI,VT,NH	87.6%	80.1%
MI	59.7%	69.8%
MN	7.8%	47.7%
MS	60.0%	20.5%
MT	17.7%	37.6%
NC	39.0%	50.5%
ND	41.3%	71.6%
NM	23.7%	88.7%
NV	83.3%	90.7%
NY	75.5%	65.8%
ОН	14.7%	55.2%
OR	47.0%	59.8%
PA	71.6%	67.3%
SC	36.8%	55.7%
SD	56.1%	46.9%
TN	56.7%	41.1%
UT	94.4%	97.4%
VA,WV	48.5%	58.7%
WA	47.5%	85.6%
WI	31.2%	54.7%
WY	88.5%	95.4%
unweighted average	45.9%	60.4%

USDA/NASS

Pasture/Grazing accuracies all states 2010

STATE	PRODUCER'S ACCURACY	USER'S ACCURACY
AL	46.0%	80.5%
СА	54.6%	92.2%
FL	45.9%	77.6%
GA	71.8%	70.9%
IA	42.8%	78.3%
ID	62.4%	93.8%
IL	39.1%	85.2%
IN	23.0%	72.5%
КҮ	46.3%	73.7%
MD,DE,NJ	60.7%	61.8%
ME,MA,CT,RI,VT,NH	42.9%	64.6%
MN	65.3%	86.2%
NC	63.0%	65.9%
NY	29.7%	50.3%
ОН	31.8%	76.4%
OR	30.2%	95.2%
PA	60.8%	62.9%
SC	62.5%	73.6%
TN	59.9%	77.7%
VA,WV	76.1%	75.8%
WA	53.0%	94.7%
WI	60.8%	77.1%
unweighted average	51.3%	76.7%

Cropland Reserve Program accuracies

- Experimented adding CRP category for within season CDL products (56m, overall crop accuracy = 78.1%)
 - only used when know to be a grassland type cover
 - CRP results
 - 61.08% producer's accuracy
 - 74.37% user's accuracy
 - Not horrible

Red = CRP

						ŝ
CLASS		Correct	Producer	User	Bias	
Corn	1	141131	90.98%	94.43%	-3.7%	
Soybeans	5	314465	95.33%	95.38%	-0.1%	
Sunflowers	6	63206	87.43%	89.18%	-2.0%	
Barley	21	15370	37.01%	73.94%	-49.9%	
Durum wheat	22	147770	68.88%	75.14%	-8.3%	
Spring wheat	23	571979	89.59%	84.78%	5.7%	
Winter wheat	24	25832	72.86%	87.25%	-16.5%	
Canola	31	96998	94.26%	96.57%	-2.4%	
Flaxseed	32	13210	51.82%	81.49%	-36.4%	
Mustard	35	1330	51.25%	86.76%	-40.9%	
Alfalfa	36	21761	38.88%	62.68%	-38.0%	
Other hays	37	44939	33.81%	57.88%	-41.6%	
Beets	41	5358	89.61%	92.14%	-2.7%	
Dry beans	42	29806	77.91%	84.18%	-7.4%	
Lentils	52	27772	86.93%	88.03%	-1.2%	
Peas	53	33376	80.34%	87.42%	-8.1%	
Idle / Fallow	61	11739	38.79%	81.14%	-52.2%	
CRP	102	183859	61.08%	74.37%	-17.9%	

Grassland mapping thoughts and conclusions

- Herbaceous differentiation
 - Difficult because typically land use (versus cover) designations
 - Little spectral difference between grass types
 - The data from FSA is not usually statistically representative of what is on the ground
 - CRP may be reasonable but we are trying to move away from any land use type categories and only focus on land cover
 - Will continue to haunt us
 - If someone can figure it out they will be a hero
- Recommendation to CDL use is to
 - Treat any grassy cover type cautiously and
 - Lump into a general grassland cover type

2011 CDL campaign

- National cover once again at 30m
- Considering clumping together all grass usage categories into one
 - Avoids perception that we can actually separate them
- Release to public early 2012
- Landsat TM is the primary data source
 - God willing
- DEIMOS and UK2 will also likely be incorporated
 - Native 22m, 3 band
 - But would be resampled to 30m

North Dakota crop timing

North Dakota '09 CDL, Classification producer's accuracy v. training data error

North Dakota '09 CDL, Classification user's accuracy v. training data error