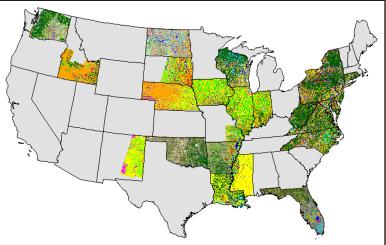
Dave M. Johnson Geographer United States Department of Agriculture National Agricultural Statistics Service Research and Development Division Spatial Analysis Research Section

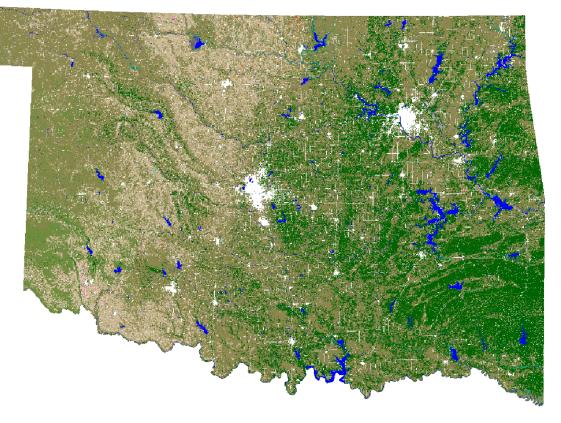

Classifier Shootout

A quantitative assessment of 3 popular image classification methodologies

NASS Cropland Data Layer (CDL) Program

- State specific land cover classifications emphasizing row crop agriculture
 - Some regions done annually
 - Corn Belt, The Delta
 - Others "one-and-done"
 - Mid-Atlantic, Idaho, Florida
- Within NASS, CDL used to
 - Tighten confidence intervals on survey derived acreage estimates
 - Improve county level acreage estimates

Example CDL



Cropland Data Layer

Spatial Analysis Research Section

Popular Image Classifiers

Maximum Likelihood (ML)

– ERDAS Imagine

Object-oriented (OO)

- Definiens Professional (eCognition)

Classification Tree (CT) (Decision Tree)

- Rulequest See5.0

Evaluate which methodology is best

- Classification accuracy
- Large dataset handling
- Ease of use
- Cost
- Stability
- Speed

NASS Processing Assumptions

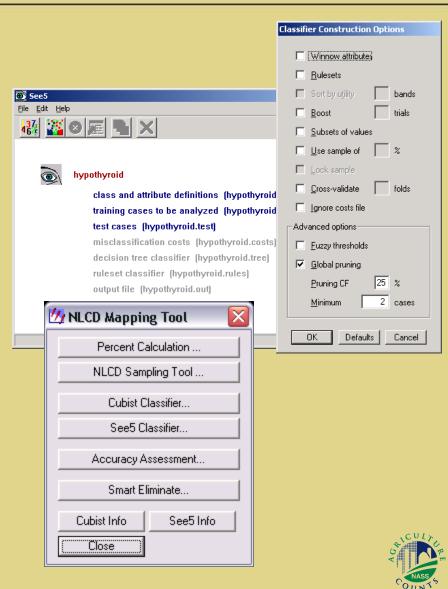
- Representative ground truth data is available
- Imagery data will not be radiometrically calibrated
- Data (imagery or ground truth) will not always be perfect

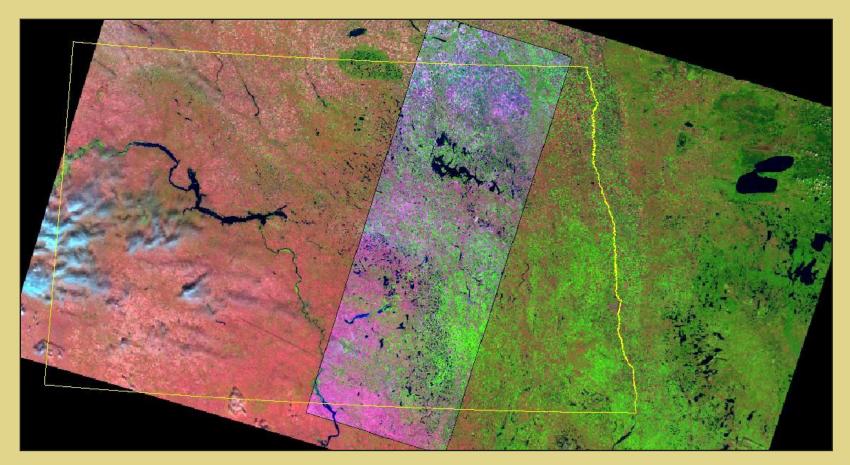
Supervised Classification Scenario!

Ground Truth – two sources

- NASS June Agricultural Survey (JAS)
- Farm Service Agency (FSA) Common Land Unit (CLU) / 578 data

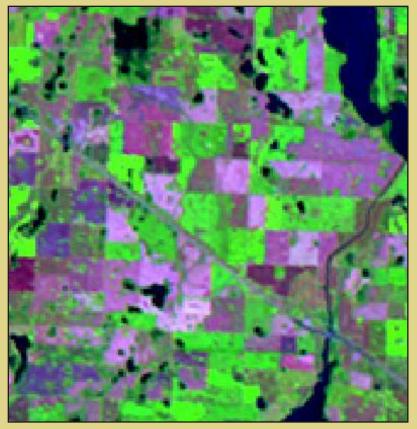
NASS


FSA

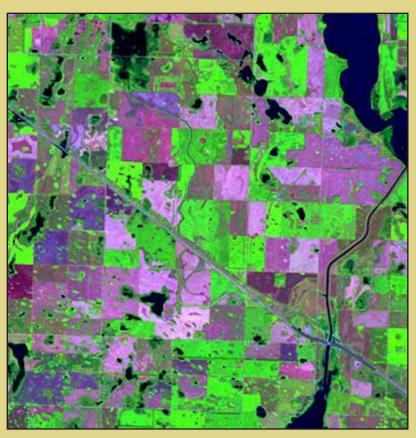

See5.0 *vs*. Other CT Software?

- Relatively cheap (\$750)
- Incorporates a powerful ensemble method known as "boosting"
- An interface "NLCD Mapping Tool" has been written to easily interface it with ERDAS Image
 - Provided free by the USGS!

North Dakota Test Case



Resourcesat-1 AWiFS & LISSIII 22 August 2006



North Dakota Raw Data

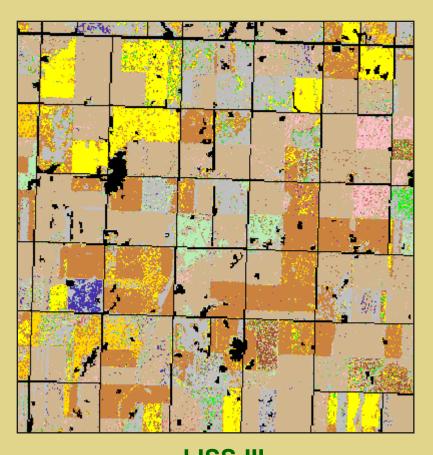
AWiFS (56m, 4-band) Red=Red, Green=NIR, Blue=SWIR

LISS-III (23m, 4-band) Red=Red, Green=NIR, Blue=SWIR

Methodology

- Reprojected/mosaicked to common projection
- Clipped AWiFS to LISS-III's extent
 - Only analyzed the region of overlap
- Built ground truth
 - Random half of FSA CLU/578 utilized for training
- Ran varieties of supervised classifications
 - Classification Tree
 - Object-oriented
 - Maximum Likelihood
 - (also created some hybrid classifications)
- Accuracy assessed

- Against CLU/578 half that was not used for training

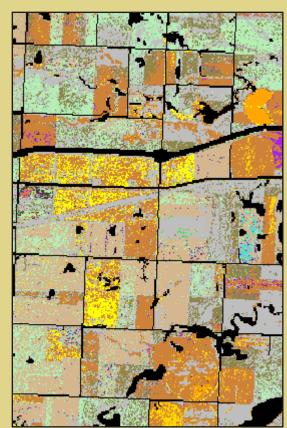


North Dakota Classification – some map results

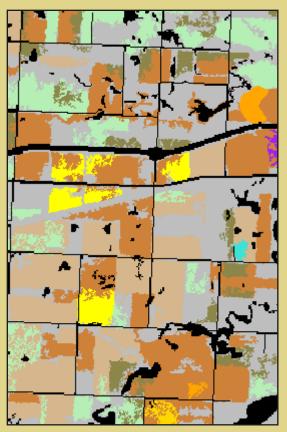
AWiFS 50.1% pixels correct

LISS-III 52.4% pixels correct

Classification Tree output

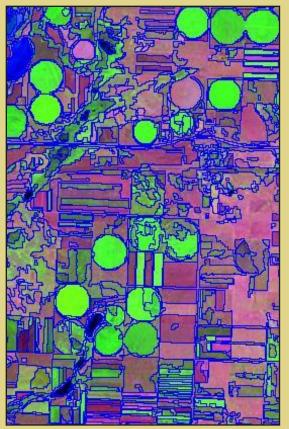

Post Classification Polishing

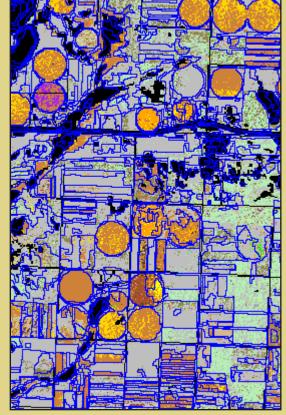
Applying a 20 acre minimum mapping unit (MMU)



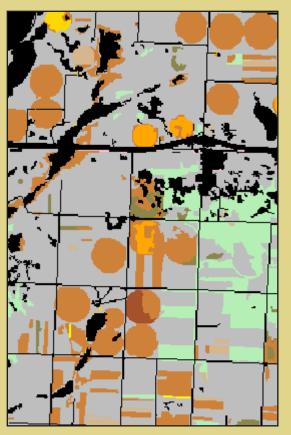
Raw Scene

Initial CT Analysis


20 acre MMU applied



Post Classification Polishing


Hybrid approach - Definiens Professional segment fill

Raw Segmented Scene

Initial CT Analysis

Majority Fill Segments

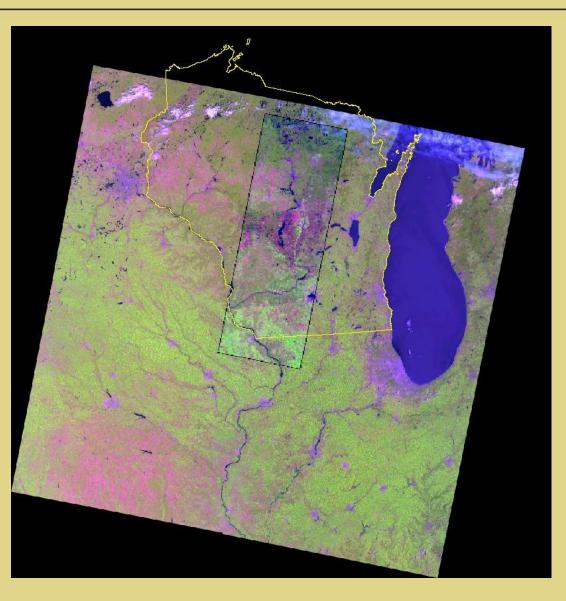
United States Department of Agriculture National Agricultural Statistics Service Research and Development Division Spatial Analysis Research Section

North Dakota Quantitative Results

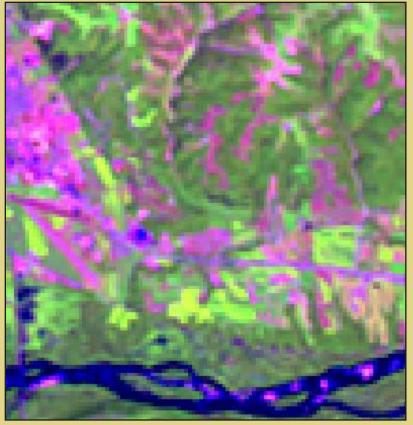
	AWiFS	LISSIII
Maximum Likelihood	48.1%	50.4%
Maximum Likelihood (20 acre MMU)	51.0%	53.3%
Object-oriented (spectral)	40.8%	40.5%
Object-oriented (geometry*)	17.4%	???
Classification Tree	50.1%	52.4%
Classification Tree (20 acre MMU)	54.6%	57.6 %
Hybrid (OO segment fill of CT)	53.9%	55.5%

? - software/memory file size issue

* - rectangular fit, length/width, radium of smallest enclosing polygon, main direction, and density

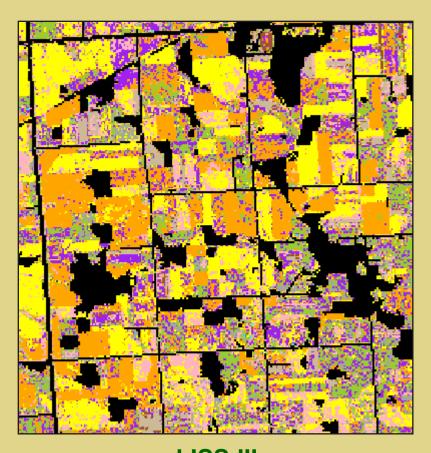


Wisconsin Test Case


31 July 2006

Wisconsin Raw Data

AWiFS (56m, 4-band) Red=Red, Green=NIR, Blue=SWIR


LISS-III (23m, 4-band) Red=Red, Green=NIR, Blue=SWIR

Wisconsin Classification – some map results

AWiFS 50.4% pixels correct

LISS-III 55.9% pixels correct

Classification Tree output

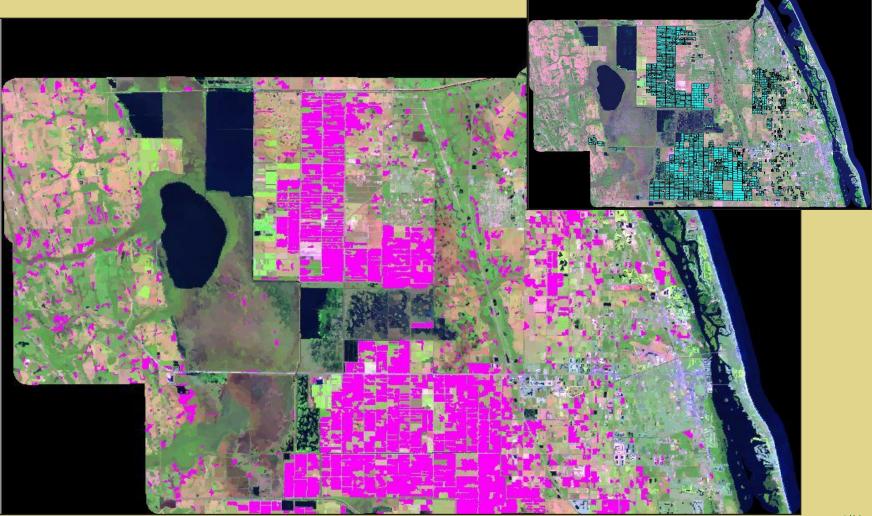
Wisconsin Quantitative Results

	AWiFS	LISSIII
Maximum Likelihood	53.6%	57.5%
Maximum Likelihood (10 acre MMU)	55.1%	59.0%
Object-oriented (spectral)	39.2%	?
Object-oriented (geometry*)	?	?
Classification Tree	50.4%	55.9%
Classification Tree (10 acre MMU)	53.0%	60.0%
Hybrid (OO segment fill of CT)	51.7%	59.6%

? - software/memory file size issue

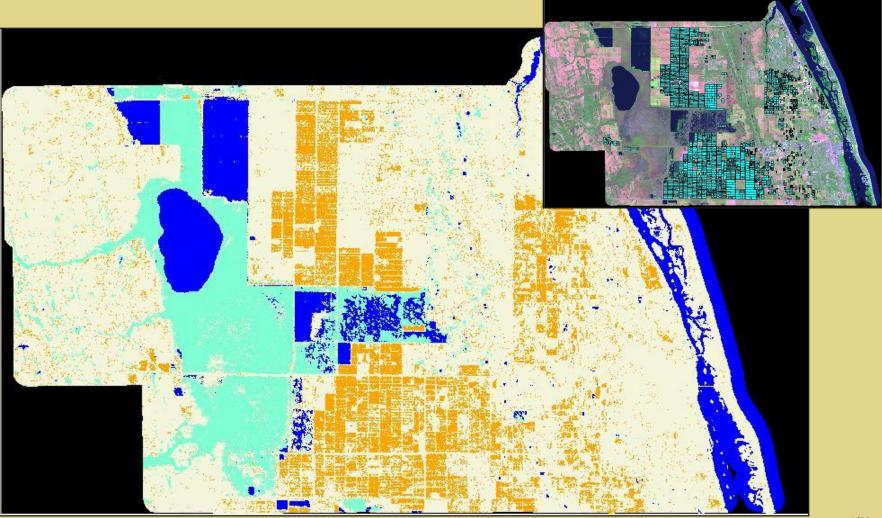
* - compactness, asymmetry, main direction, density, and roundness

Classification of citrus groves



United States Department of Agriculture National Agricultural Statistics Service Research and Development Division Spatial Analysis Research Section Landsat TM 25 Jan. 2005 Red, Green, Blue bands 7,5, 2

Final eCognition citrus classification


United States Department of Agriculture National Agricultural Statistics Service Research and Development Division Spatial Analysis Research Section

Accuracy = 90.0% Kappa = 0.65

Maximum likelihood classification

United States Department of Agriculture National Agricultural Statistics Service Research and Development Division Spatial Analysis Research Section

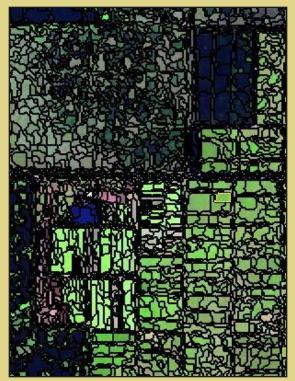
Accuracy = 88.0% Kappa = 0.57

Citrus Comparison Summary

	Accuracy	Kappa
Maximum Likelihood	88.0%	0.57
Maximum Likelihood (MMU 10 pixels)	91.9%	0.72
Object-oriented (best attempt)	90.0%	0.65
Hybrid (default seg. parameters)	92.9%	0.75
Hybrid (tuned seg. parameters)	93.5%	0.78

Definiens Professional – a side note

I5_015041_20050125_buf1km.img (1) [Alias (24.6) 0.0 n I5_015041_20050125_buf1km.img (2) [Alias (10.9) 1.0	ntire scene new level • level 3
I5_015041_20050125_buf1km.img (4) [Alias (26.4) 1.0 I5_015041_20050125_buf1km.img (5) [Alias (35.7) 1.0 I5_015041_20050125_buf1km.img (6) [Alias (49.2) 0.0 I5_015041_20050125_buf1km.img (7) [Alias (14.9) 1.0	new level - level 2 new level - level 1 new level bixel level
Scale parameter Composition of homogeneity criterion: Segmentation mode 0.5 Normal Compactness	0.2 0.5 Smoothness
Overwrite existing level Image: Classification-Based Refer to	


What initial segmentation parameters should one use?

Segment Image testing different scale

factors

Scale = 3 Shape factor = 0.2

Scale = 8 Shape factor = 0.2

Scale = 20Shape factor = 0.2

United States Department of Agriculture National Agricultural Statistics Service Research and Development Division Spatial Analysis Research Section

Accuracy impact from changes in scale and color

Scale	Shape	Accuracy	Карра
10	10	92.9%	0.75
10	20	92.9%	0.75
10	30	92.7%	0.75
10	40	93.0%	0.76
20	10	93.1%	0.76
20	20	93.2%	0.77
20	30	93.5%	0.78
20	40	93.3%	0.77
30	10	93.3%	0.78
30	20	93.4%	0.78
30	30	93.3%	0.78
30	40	93.5%	0.78
40	10	93.4%	0.78
40	40	93.4%	0.78
50	40	93.4%	0.79
60	40	92.4%	0.76

Scale and Shape parameters have little impact on classification accuracy

Spectral Difference Segmentation parameter is much more important

United States Department of Agricultu

National Agricultural Statistics Service Research and Development Division Spatial Analysis Research Section

Goals met

Evaluate which methodology is best

- Classification accuracy
- Large dataset handling
- Ease of use
- Cost
- Stability
- Speed

- Classification Tree
- Classification Tree
- -(equal)
- Maximum Likelihood
- Classification Tree
- Classification Tree

Summary of Comparing Image Classifiers

- NASS has spent considerable time evaluating classification methodologies
 - Maximum likelihood is adequate but somewhat limiting at this point
 - Object-oriented is intriguing and likely useful for particular applications but unwieldy and not improving overall classification efforts
 - All things considered, the decision trees seem to be the way for the Cropland Data Layer program to proceed into the future

Object-oriented Lessons Learned

- Large datasets always problematic
- Geometric segment attributes (versus spectral) have little value for classification
- Initial scale, shape, etc. segmentation parameters have little impact
 - Spectral Difference Segmentation has impact though
- Probably best used when the pixel/object ratio is large and features are of radically different scales and shapes
- "Nearest Neighbor" classifier too simplistic
- Derived polygons are useful in external applications

Pixel-based Methods Lessons Learned

- Classification Trees
 - "Boosted" trees always superior to regular
 - Tolerant of outliers
 - Hand large datasets with ease
- Maximum Likelihood
 - Still robust even though may be viewed as oldfashioned

Contextual spatial filtering using appropriate minimum mapping units improves map accuracies by a few percentage points

Thank You

dave_johnson@nass.usda.gov 703-877-8000 x169 www.nass.usda.gov

