David M. Johnson Geographer United States Department of Agriculture National Agricultural Statistics Service Research and Development Division Spatial Analysis Research Section

Cropland Classification Accuracy as a Function of Training Data Accuracy

Association of American Geographers, 2010 Annual Meeting

Study Overview

- Want to understand how potential errors in training data impact decision-tree based land cover classification
 - Especially tailored to mapping efforts within NASS
 - Primarily in regions dominated by common commodity crops
- Hypothesis : Classification accuracy decreases as training data accuracy decreases
 - By how much?
 - Is there a threshold?
 - What's the relationship?
 - Is it linear?
 - Are there scenarios where it improves the outcome?
- Chose 3 states to test these questions
 - Iowa
 - Idaho
 - North Dakota

Operational land cover mapping within NASS

Classification Methodology Overview

- 1) "Stack" AWiFS, TM, MODIS, and ancillary data layers within a raster GIS
 - 56 m grid cells, Albers Conic Equal Area projection, common extent by state
 - some compromised imagery (from clouds, haze, data gaps, etc.) is acceptable
- 2) Sample spatially from stack within known ground truth from FSA (ag. categories) and NLCD (non-ag. categories)
 - a heavy sample rate (100s of thousands) at the pixel level is employed
- 3) "Data-mine" samples using Boosted Classification Tree Analysis to derive best fitting decision rules
 - implemented with Rulequest See5.0, interfaced with ERDAS Imagine with the "NLCD Mapping Tool"
- 4) Create land cover map by applying derived decision rules back to input data stack

Example Classification Subset

CDL Classification (red = sugar beets, brown = soybeans tan = spring wheat, gold = corn, yellow = sunflowers) Resourcesat-1 AWiFS, 6 July 2007

(red =SWIR band, green=NIR band, blue=red band)

Accuracy Assessment

Each classification tested against independent set of ground truth data to determine overall and within class accuracies

Example classification subset

Example validation subset

Degradation methodology

Altered sample files with

X'th row scrambled

Column with land cover category value

DG	DΨ	DI	DI	DK	DI	DM	DN
100	011	0.474	0.450	00.	DL	DIVI	DIN
133	22	3474	8460	434	0	0	
132	21	3474	8460	436	U	U	1
133	24	4020	9158	435	0	0	1
138	24	2939	9249	440	0	0	1
133	20	3711	9183	439	0	0	1
134	22	3711	9183	439	0	0	1
133	23	3324	9359	437	0	0	1
134	30	4205	9011	440	0	0	1
140	28	3759	9042	438	0	0	1
134	25	3770	9252	436	0	0	1
135	24	2864	9244	439	0	0	1
132	23	3324	9359	437	0	0	1
134	24	3759	9042	437	0	0	1
134	23	4205	9011	438	0	0	1
134	24	3433	9104	435	0	0	1
134	23	3372	8987	439	0	0	1
133	23	3372	8987	440	0	0	1
194		9005	0005	400	0	0	1

Original sample file with no known errors (dozens of columns, hundreds of thousands of rows in reality)

Etc.

	DG	DH	DI	DJ	DK	DL	DM	DN
orv	133	22	3474	8460	434	0	0	1
Ciy	132	21	3474	8460	436	0	0	5
	133	24	4020	9158	435	0	0	181
row	138	24	2939	9249	440	0	0	1
	133	20	3711	9183	439	0	0	5
	134	22	3711	9183	439	0	0	1
	133	23	3324	9359	437	0	0	1
	134	30	4205	9011	440	0	0	1
>	140	28	3759	9042	438	0	0	1
/	134	25	3770	9252	436	0	0	5
	135	24	2864	9244	439	0	0	1
	132	23	3324	9359	437	0	0	5
	134	24	3759	9042	437	0	0	1
	134	23	4205	9011	438	0	0	1
	134	24	3433	9104	435	0	0	1
	134	23	3372	8987	439	0	0	1
	133	23	3372	8987	440	0	0	5

E١

Every

 \rightarrow

 Run classifier

Output land cover map

Rulequest See5.0

other row

2009 Iowa Cropland Data Layer

Iowa '09 CDL input layer examples

Scenes of data actually used: 10 AWiFS, 10 TM, 2 MODIS NDVI, DEM, Canopy, and Impervious (dates ranged from 1 April '09 – 8 August '09)

Iowa classifications with training data error %

gold = corn, dark green = soybeans

Total scene has 46,474,682 pixels, 755,116 (1.6%) chosen for training

Iowa '09 CDL, Classification accuracy v. training data error

Iowa '09 CDL, Classification Kappa v. training data error

Iowa '09 CDL, Classification producer's accuracy v. training data error

Iowa '09 CDL, Classification user's accuracy v. training data error

Iowa '09 CDL, Classification bias v. training data error

2009 Idaho Cropland Data Layer

Land Cover Categories (by decreasing acreage)

AGRICULTURE

Idaho '09 CDL input layer examples

Scenes of data actually used: 15 AWiFS, 7 MODIS NDVI, DEM, Canopy, and Impervious (dates ranged from 29 September '08 – 1 September '09)

Idaho classifications with training data error %

Total scene has 69,018,509 pixels, 891,793 (1.3%) chosen for training

Idaho '09 CDL, Classification accuracy v. training data error

Idaho '09 CDL, Classification Kappa v. training data error

Idaho '09 CDL, Classification producer's accuracy v. training data error

Idaho '09 CDL, Classification user's accuracy v. training data error

Idaho '09 CDL, Classification bias v. training data error

2009 North Dakota Cropland Data Layer

Land Cover Categories (by decreasing acreage)

North Dakota '09 CDL input layer examples

Scenes of data actually used: 14 AWiFS, 13 TM, 1 MODIS NDVI, DEM, Canopy, and Impervious (dates ranged from 6 May '09 – 17 September '09)

North Dakota classifications with training data error %

Total scene has 58,388,946 pixels, 737,633 (1.3%) chosen for training

North Dakota '09 CDL, Classification accuracy v. training data error

North Dakota '09 CDL, Classification Kappa v. training data error

North Dakota '09 CDL, Classification producer's accuracy v. training data error

North Dakota '09 CDL, Classification user's accuracy v. training data error

Training data error

North Dakota '09 CDL, Classification bias v. training data error

'09 CDL, Cropland classification accuracy v. training data error

'09 CDL, Cropland classification Kappa v. training data error

'09 CDL, Corn classification accuracy v. training data error

Training data error

'09 CDL, Corn classification bias v. training data error

Conclusions

- Degradation of training data.....
 - degrades the classification.
 - has relatively modest impacts on the classification until more than roughly 25% of training data is in error (then it falls rapidly, and thus is not linear).
 - hurts the classification more when lots of classes are present.
 - never improves a classification.
 - impacts differently the areal bias of categories within the classification.

dave_johnson@nass.usda.gov www.nass.usda.gov