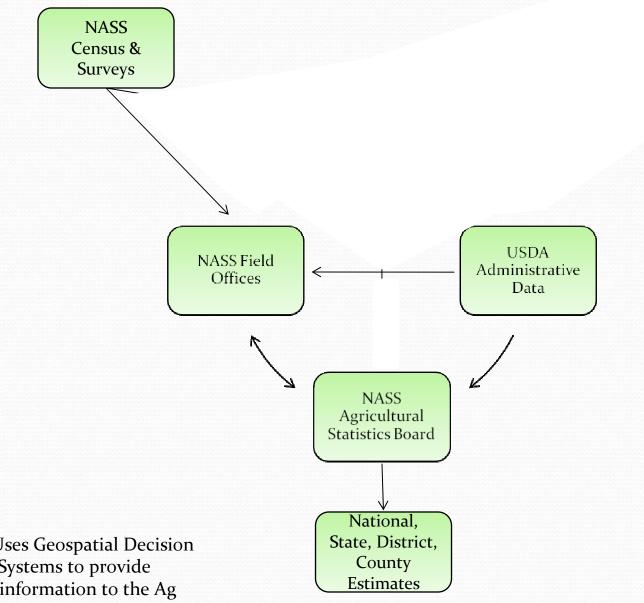
USDA/National Agricultural Statistics Service Geospatial Programs

Research & Development Div. Geospatial Information Branch - Spatial Analysis Research Section (SARS) Fairfax, VA., USA Larry Beard – Senior Agricultural Statistician larry beard@nass.usda.gov

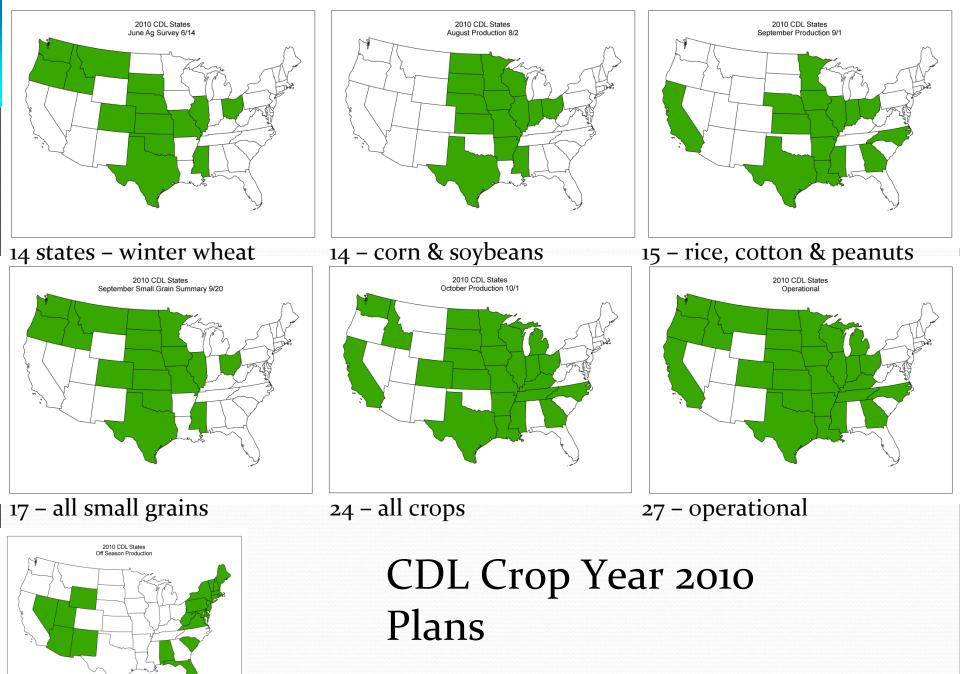
The NASS Mission


"To provide timely, accurate, and useful statistics in service to U.S. agriculture"

- U.S. statistical system is decentralized.
- The Food & Fiber Sector is largest single component of US GDP.
- NASS is the official data collection (& dissemination) arm of USDA, providing the Official Statistics of and about US Agriculture.
- Most data series mandated by law.
- Crop monitoring & assessment is mandated, but NASS works closely with the public and agriculture sector to determine report content & scheduling.
- We're a public information service, we don't do much in the way of analyses, interpretation, or predictions.
- Literally billions of \$\$\$ and millions of decisions are made based on NASS reports every year, a heavy responsibility to "get it right".
- NASS is unique in that we are a federal, operational program, with a statistical research component, mandated by law.

My point – NASS acreage & crop reports are serious business, and the acceptance of remote sensing-based crop monitoring & assessments by the Agency is a major

NASS Estimation Systems



* NASS Uses Geospatial Decision Support Systems to provide updated information to the Ag Statistics Board and data users

Cropland Data Layer (CDL) Objectives

- "Census by Satellite"
 - Annually cover major program crops and regions
 Crops accurately geo-located
- Deliver in-season remote sensing acreage estimates
 - NASS Official Reports
 - Update planted area .
 - Reduce respondent burden from surveys
- Provide timely, accurate, useful estimates
 - Measurable error
 - Unbiased/independent estimator
 - State, District, County .
- Public domain crop specific crop classification
 - Hosted @ NRCS Geospatial Data Gateway or http://www.nass.usda.gov/research/Cropland/SARS1a.htm or
 - Google "Cropland Data Layer" .

2010 CDL Production Schedule

January									
S	м	т	w	т	F	S			
					1	2			
3	4	5	6	7	8	9			
10	11	12	13	14	15	16			
17	18	19	20	21	22	23			
24	25	26	27	28	29	30			
31									

Acreage Report – Winter

Wh	ieat		May			
S	М	т	w	т	F	S
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	31					

	June									
	S	м	т	w	т	F	S			
			1	2	3	4	5			
alest	6	7	8	9	10	11	12			
	13	14	15	16	17	18	19			
	20	21	22	23	24	25	26			
	27	28	29	30						

February

w

3

17

22 23 24 25 26 27

Т

4

10 11 12

18

F

5

19 20

S

6

13

S

7

14

21

28

Μ

1

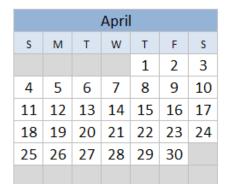
8

15

Т

2

9


16

Crop Production Report - CDL Cotton, Rice, &

PeanutsSeptember									
S	М	т	w	т	F	S. S			
			1	2	3	4			
5	6	7	8	9	10	11			
12	13	14	15	16	17	18			
19	20	21	22	23	24	25			
26	27	28	29	30					
				analist					

CDL Cotton, McC, &										
October										
S	M T W T F S									
					1	2				
3	4	5	6	7	8	9				
10	11	12	13	14	15	16				
17	18	19	20	21	22	23				
24	25	26	27	28	29	30				
31										

March									
S	М	т	w	т	F	S			
	1 2 3		4	5	6				
7	8	9	10	11	12	13			
14	15	16	17	18	19	20			
21	22	23	24	25	26	27			
28	29	30	31						

Crop Production Report – Corn &

Soybeans July 🛛 🐔							
S	М	т	w	T F S			
				1	2	3	
4	5	6	7	8	9	10	
11	12	13	14	15	16	17	
18	19	20	21	22	23	24	
25	26	27	28	29	30	31	

August F S М Т W Т 5 6 7 4 1 10 11 12 13 8 9 14 17 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31

November										
s	М	Т	w	т	F	S				
	1	2	3	4	5	6				
7	8	9	10	11	12	13				
14	15	16	17	18	19	20				
			24	25	26	27				
28	29	30								
Contraction of the second	and the second second									

December									
S	M T W T F								
			1	2	3	4			
5	6	7	8	9	10	11			
12	13	14	15	16	17	18			
19	20	21	22	23	24	25			
26	27	28	29	30	31				

Small Grains

Summary

Crop Production Report – All

Crong

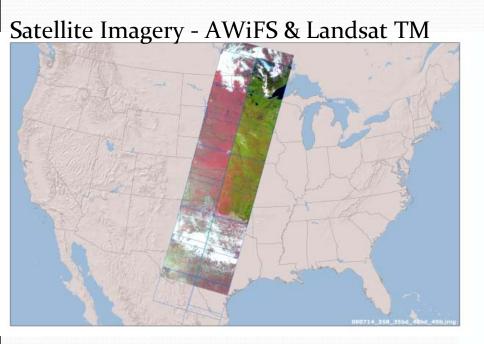
Data Partnerships

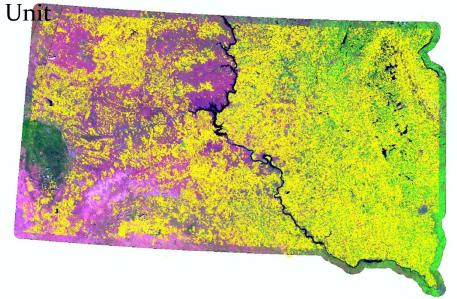
Foreign Agricultural Service Resourcesat-1 AWiFS

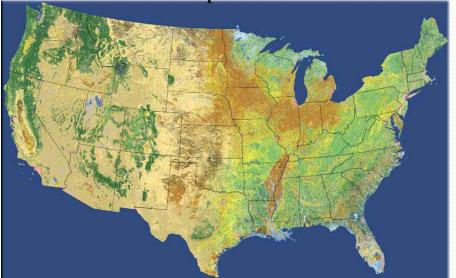
Farm Service Agency Common Land Unit "ground truth"

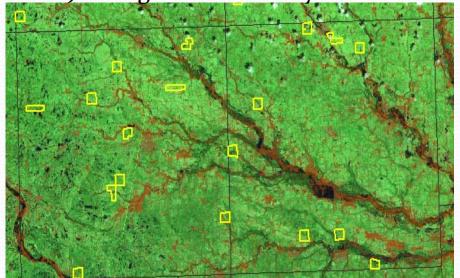
US Geological Survey National Land Cover Dataset

US Geological Survey/ NASA Landsat TM 5






Data Inputs


Farm Service Agency – Common Land

NLCD & Derivative products

NASS June Agriculture Survey

Satellite Specifications Compared

	<u>TM</u>	<u>AWiFS</u>
Altitude	705 km	817 km
Equatorial crossing time	$9:45 \pm 15$ minutes	$10:30 \pm 5$ minutes
Temporal Resolution	16 days	5 days
Spatial Resolution	30 x 30 m (reflective) 120 x 120 m (thermal)	56 x 56 m
Radiometric Resolution	8 bit (256)	10 bit (1024)
Spectral Resolution	6 (B, G, R, NIR, SWIR, MIR) + Thermal IR	4 (G, R, NIR,SWIR)
Swath wide	185 km	737 km
Scene size	184 x 152 km	370 x 370 km

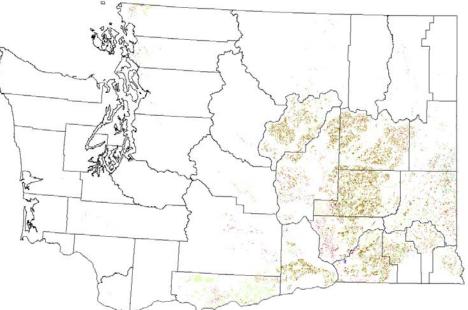
Software Suite

Ground Truth Preparation •ESRI ArcMap

Image Preparation •Leica Geosystems ERDAS Imagine 9.1

Image Classification •See 5

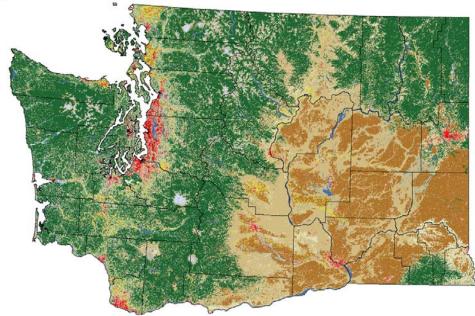
Acreage Estimates •SAS/IML Workshop



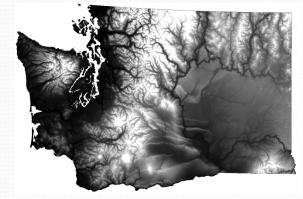
Ground Truth – Land Cover

Agriculture Ground Truth

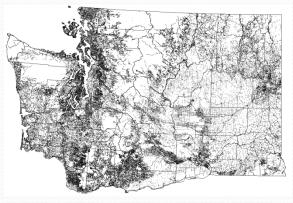
Provided by Farm Service Agency Identifies known fields and crops


Divide known fields into 2 sets ¹/₂ used for training software ¹/₂ used for validating results

Non-Agriculture Ground Truth


USGS National Land Cover Dataset

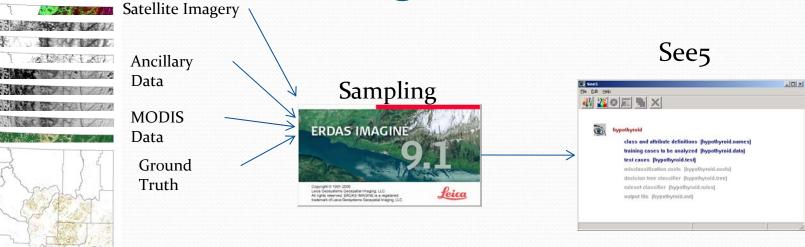
Identifies urban infrastructure and non-agriculture land cover Forest, grass, water, cities

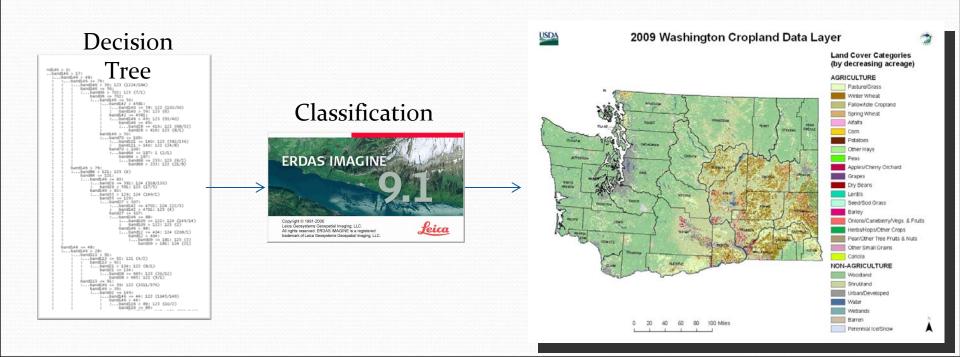

Ground Truth – Ancillary US Geological Survey

Forest Canopy

Elevation

Impervious Surfaces


Ancillary datasets help separate the agricultural landscape; determining agricultural potential


Processing a CDL

· 200 202

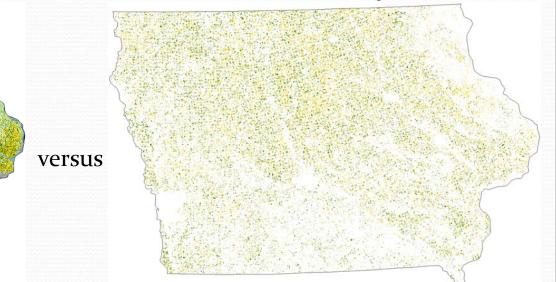
徽

16 Bar

Validating CDLs

We measure the accuracy of each CDL

Compare:


Classified pixels from CDL

Known pixels, not used for classifying imagery, from FSA

Track:

Producer Accuracy - Errors of Omission - % of pixels from category missing User Accuracy - Errors of Commission - % of pixels from category that are over classified

Cropland Data Layer

Groundtruth – $\frac{1}{2}$ saved for validation

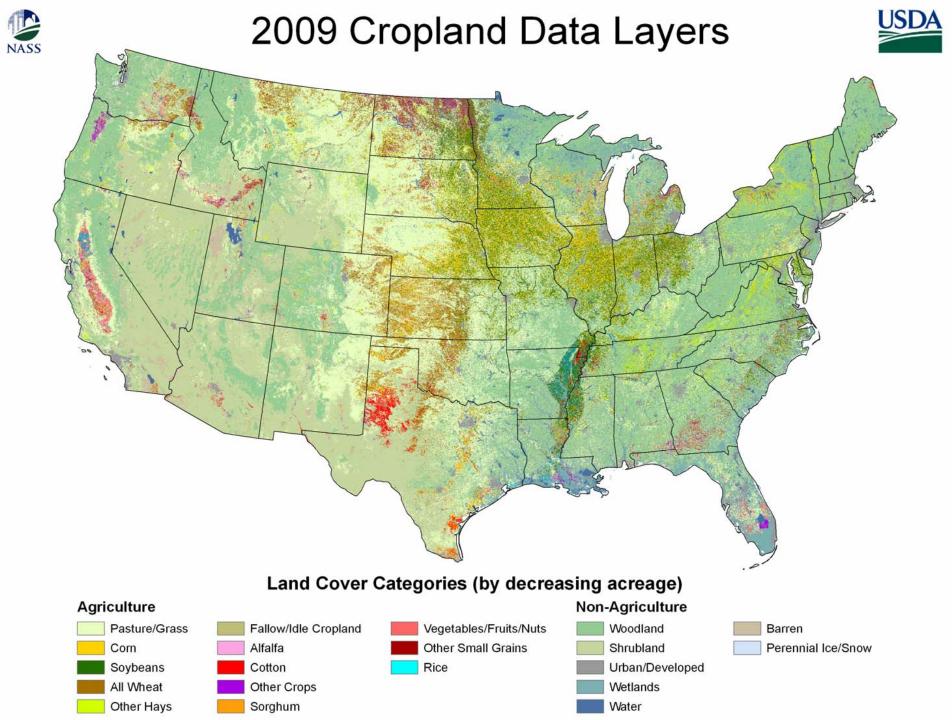
Accuracy Assessments

Crop-specific covers only	*Correct	Accuracy	Error	Kappa
OVERALL ACCURACY	740009	93.56%	6.44%	0.8488

Cover	Attribute	*Correct	Producer's	Omission		User's	Commission	Cond'l
Type	Code	Pixels	Accuracy	Error	Kappa	Accuracy	Error	Kappa
	and the second	and the set of the last last	and the last and has also has an		and the second sec	an an ar ar ar ar ar ar ar		
Corn	1	28358	95.36%	4.64%	0.9528	93.08%	6.92%	0.9297
Cotton	2	11757	95.08%	4.92%	0.9505	94.59%	5.41%	0.9456
Rice	3	2	28.57%	71.43%	0.2857	66.67%	33.33%	0.6667
Sorghum	4	21251	89.85%	10.15%	0.8972	92.46%	7.54\$	0.9236
Soybeans	5	12885	86.15%	13.85%	0.8604	88.61%	11.39%	0.8851
Sunflowers	6	102	89.47%	10.53%	0.8947	99.03%	0.97%	0.9903
Peanuts	10	512	90.14%	9.86%	0.9014	92.09%	7.91%	0.9208
Barley	21	785	71.95%	28.05%	0.7194	97.39%	2.61%	0.9739
Durum Wheat	22	48	42.86%	57.14%	0.4286	100.00%	0.00%	1.0000
Spring Wheat	23	205	56.47%	43.53%	0.5647	99.03%	0.97%	0.9903
Winter Wheat	24	580437	97.54%	2.46%	0.9631	94.00%	6.00%	0.9117
Other Small Grains	25	1120	56.97%	43.03%	0.5694	93.57%	6.43%	0.9356
Win Wht /Soyb Dbl (Crop 26	14758	79.51%	20.49%	0.7932	90.06%	9.94%	0.8996
Rye	27	13249	66.90%	33.10%	0.6664	91.39%	8.61%	0.9129
Oats	28	2941	64.85%	35.15%	0.6479	95.18%	4.82%	0.9517
Millet	29	439	77.02%	22.98%	0.7701	96.48%	3.52%	0.9648
Canola	31	337	75.90%	24.10%	0.7590	98.83%	1.17%	0.9883
Alfalfa	36	19653	88.21%	11.79%	0.8807	91.78%	8.22%	0.9168
Dry Beans	42	115	88.46%	11.54%	0.8846	93.50%	6.50%	0.9350
Potatoes	43	49	96.08%	3.92%	0.9608	100.00%	0.00%	1.0000
Other Crops	44	50	45.87%	54.13%	0.4587	80.65%	19.35%	0.8064
Misc Vegs & Fruits	47	33	54.10%	45.90%	0.5410	86.84%	13.16%	0.8684
Watermelon	48	24	77.42%	22.58%	0.7742	85.71%	14.29%	0.8571
Peas	53	188	72.59%	27.41%	0.7258	96.91%	3.09%	0.9691
Clover/Wildflowers	58	21	36.21%	63.79%	0.3621	75.00%	25.00%	0.7500
Fallow/Idle Croplar	nd 61	30612	69.78%	30.22%	0.6922	90.48%	9.52%	0.9025
Peaches	67	9	36.00%	64.00%	0.3600	100.00%	0.00%	1.0000
Other Tree Nuts & H	Fruit 71	69	33.82%	66.18%	0.3382	83.13%	16.87%	0.8313

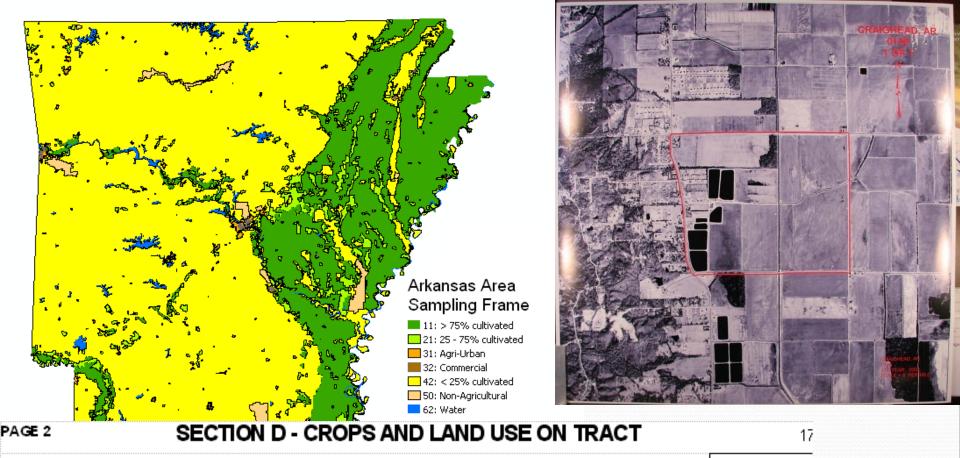
*Correct Pixels represents the total number of independent validation pixels correctly identifed in the error matrix.

Accuracy Assessments


	Туре	Attribut Cod	e	*Correc Pixel		oduce: .ccura		missior Error	Kappa	User's Accuracy	Commission Error	Cond'l Kappa
IA	Corn Soybeans		- 1 5	219771 147109		96.5 96.2		3.42% 3.76%	0.9226 0.9392		2.14% 4.22%	0.9509 0.9320
IL	Corn Soybeans		1 5	225821 133908		98.0 96.3		1.94% 3.64%	0.9527 0.9438		1.42% 2.04%	0.9650 0.9681
NE	Corn Soybeans		1 5	185642 84924		97.2 95.8		2.71% 4.17%	0.9605 0.9513		2.68% 3.05%	0.9608 0.9643
SD	Corn Soybeans		1 5	80325 70738		94.2 95.0		5.71% 4.97%	0.9342 0.9439		4.22% 2.28%	0.9513 0.9741
	Crop-specific cover	s only	*Co	orrect	Accur	асу	Erroi	r Kapı				
IA	OVERALL ACCURACY		36	588803	95.	74%	4.26			_		
IL	OVERALL ACCURACY		37	30093	97.	05%	2.95	⊧ 0.942	26		te level cies are ve	ery
NE	OVERALL ACCURACY		30	71960	94.	05%	5.959	0.898	1		high	
SD	OVERALL ACCURACY		23	06428	87.	51%	12.49	€ 0.841	16			

Producer's Accuracy: relates to the probability that a ground truth pixel will be correctly mapped and measures errors of omission.

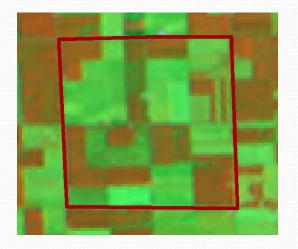
Errors of Omission: occur when a pixel is excluded from the correct category.


User's Accuracy: indicates the probability that a pixel from the classification actually matches the ground truth data and measures errors of commission. Errors of Commission: occur when a pixel is included in an incorrect category.

Kappa Coefficient: A statistics measure of agreement, beyond chance, between two maps.

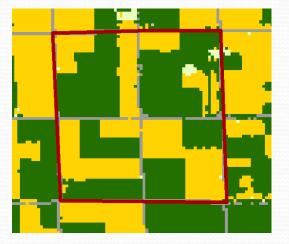
Remote Sensing Regression Estimation

How manγ acres are inside this blue tract boundarγ drawn on the photo (map)?..... Now I would like to ask about each field inside this blue tract boundarγ and its use du<u>ring 2000</u>


·					
	FIELD NUMBER	01	02		٦
1.	Total acresin field	828	828	828	
2.	Crop or land use. [Specify]				
3.	Occupied farmstead or dwelling	.843			
4.	Waste, unoccupied dwellings, buildings and structures, roads, ditches, etc.	. 			
5.	Woodand	81	831	831	
6.	Pasture Permanent (not in croprotation)	842	842	842	
		856	856	856	

Estimation Components: Area Sampling Frame+ June Area Segment+ Questionnaire

Regression-based Acreage Estimator


Acreage not just about counting pixels

The Goal: Identify areas with defined acreage totals to compare CDL pixel counts Current Solution: June Agriculture Survey Segments

June Ag Segment

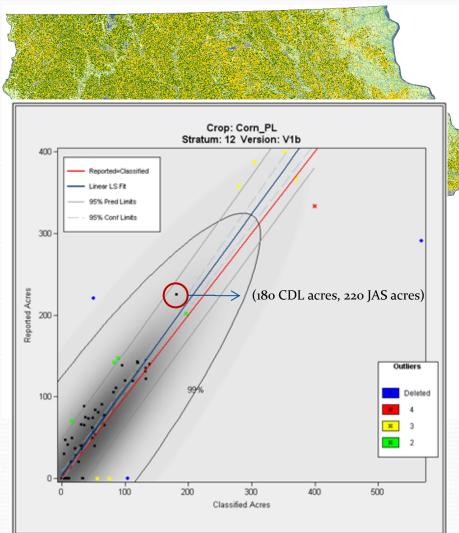
Farmers within segment report 220 acres of corn Vs

Crop Land Data Layer

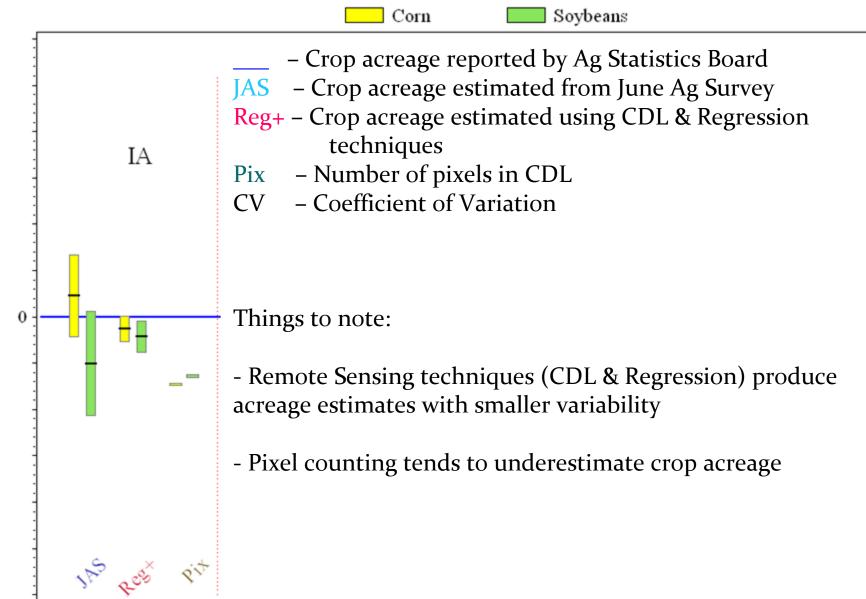
Pixel Counting estimates 180 acres of corn

Regression-based Acreage Estimator

Acreage not just about counting pixels

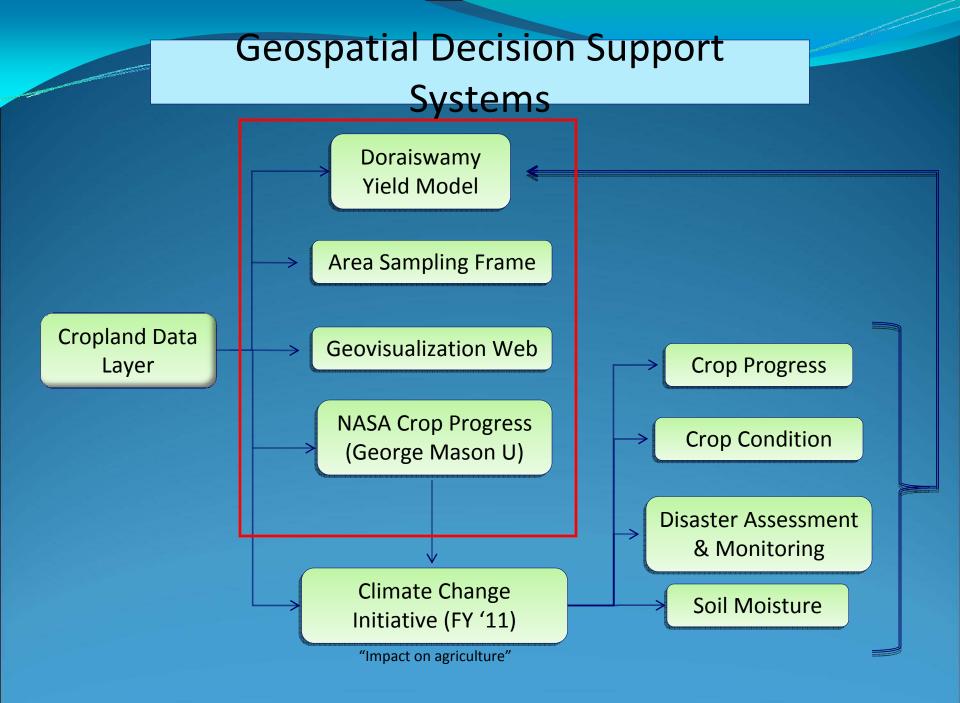

Simple Linear Regression

Regression used to relate categorized pixel counts to the ground reference data


- (X) Cropland Data Layer (CDL) classified acres
- (Y) June Agricultural Survey (JAS) reported acres

Outlier segment detection - removal from regression analysis

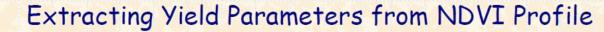
Using regression results in estimates reduces error rates over using JAS alone



2008 State Level Estimates +/- 2 CVs

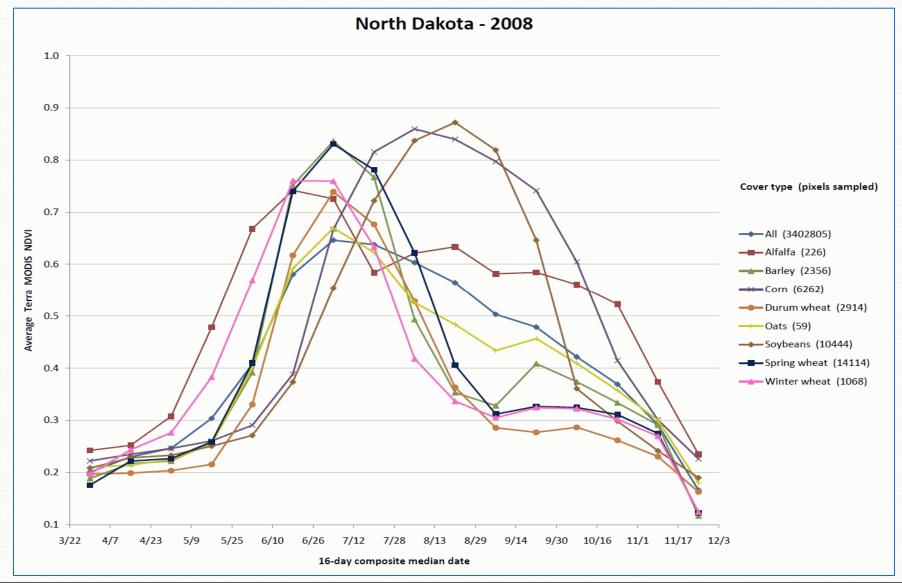
Number of CDL's & Acreage Indications

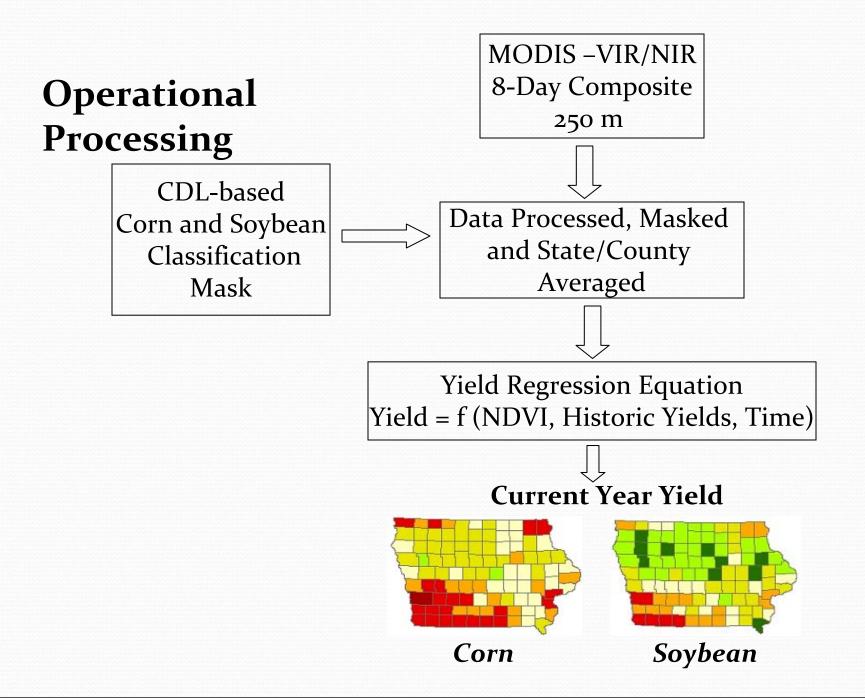
Item	Year						
	2007	2008	2009	2010			
Total CDL's	21	35	48	48			
In Season State Level Estimates	15	19	26	28			
Post Season County Level Estimates	15	19	36	36			
Crops	9	14	15	16			

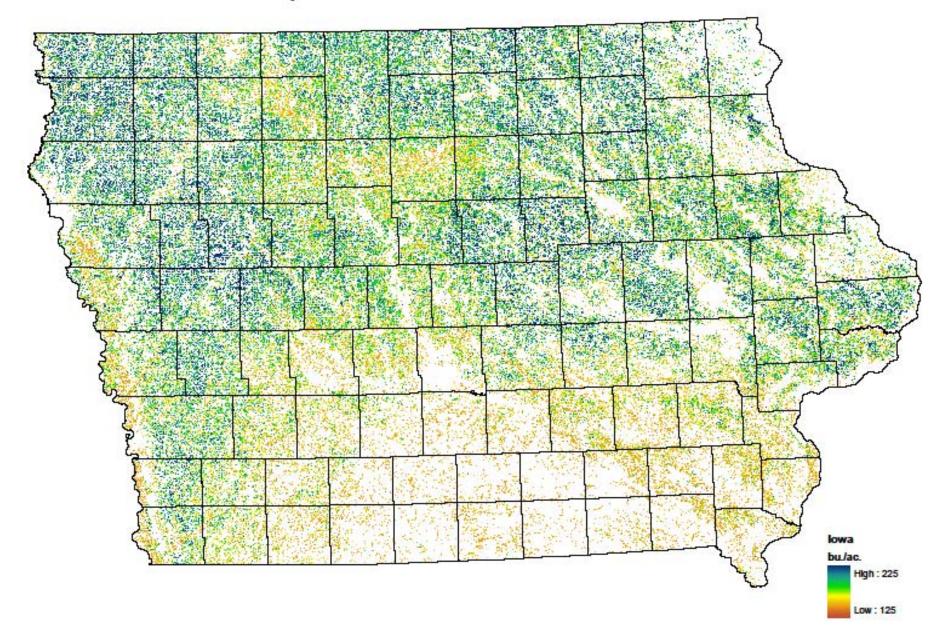


Doraiswamy Remote Sensing Yield Program

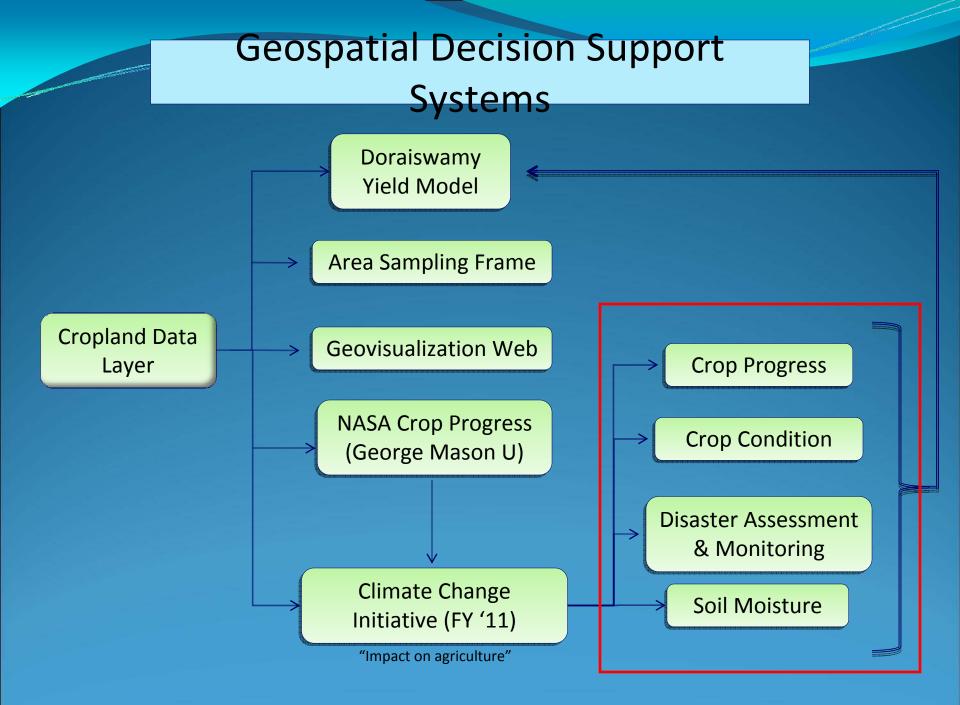
- Operational in 7 major corn & soybean states.
- Tech transfer from USDA/ARS complete
- MODIS sensors used, 8 day +7 day eMODIS; data are smoothed
- Cropland Data Layer platform for masks
- Operational processing 2 week prototype development reduced to 2 days


- Current issues include:
 - August predictions unlikely with current methodology.
 - Sept. R²'s ~0.850/state for corn
 - Oct. R²'s ~0.93 for corn; 0.810 for soybeans
 - NDVI a reliable predictor for corn yields; soybeans need NDVI/EVI + other variable(s)


Time Series Phenological Profiles



Phenologies by Crop


September 1, 2010 Estimated Corn Yield

Regression Equation: Current Results

State/Corn	Coefficient of Determination (adj. R ²) – October	Calculated Yield (Bu/Acre)
<u>Iowa</u>	0.9404	*
<u>Illinois</u>	0.9224	*
<u>Indiana</u>	0.9656	*
Minnesota	0.9999	*
<u>Nebraska</u>	0.9563	*
<u>Ohio</u>	0.9832	*
<u>Kansas</u>	0.9830	*

* Confidential (Remote sensing yield indications are generally within 10% of the official NASS Estimate)

Design of Remote Sensing-Based U.S. National Crop Progress Monitoring System (NCPMS)

Zhengwei Yang^{1,2}, Liping Di², Genong Yu², Rick Mueller¹ ¹Research and Development Division, USDA NASS ²Center for Spatial Information System Science George Mason University <u>Zhengwei yang@nass.usda.gov</u>

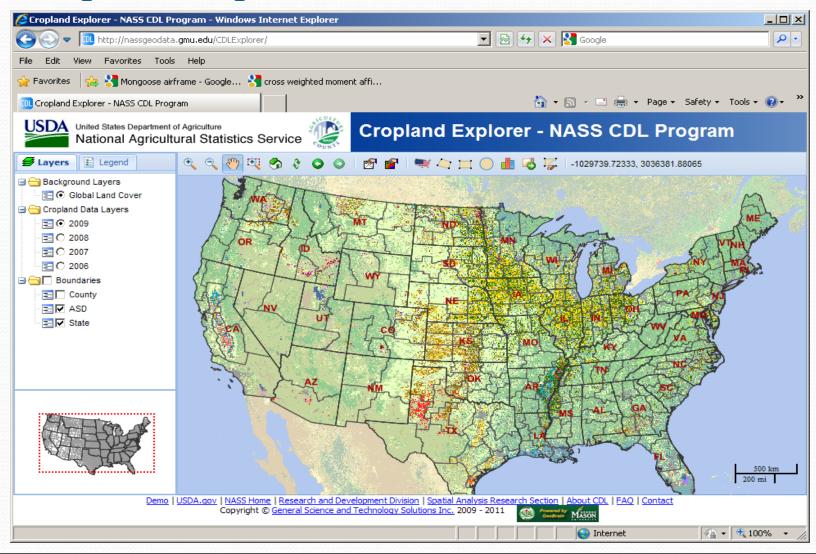
Project Goals

- To support and enhance the operation of monitoring nationwide crop progress and conditions at NASS
 - Develop science based crop progress metrics
 - Develop and prototype an operational National Crop Progress Monitoring System (NCPMS)
- Develop NCPMS products that will be complementary to existing NASS Crop Progress products
- To enhance the NASS crop progress and condition data accessibility, interoperability and dissemination

Center for Spatial Information Science and System

Why does NASS need a Remote Sensing-Based Crop Progress Monitoring System?

- NASS currently conducts weekly, volunteer-based crop progress surveys, and publishes crop progress and condition reports.
- The current crop progress monitoring is
 - point-based sampling
 - subjectively estimated
 - lacks spatial distribution information
 - Inconsistent results
- Remote sensing technology provides:
 - Objective, consistent, science -based, geospatially covered, time series observations.


Major System User Requirements

- Minimum reporting area enforced to guarantee privacy.
- Interactive crop progress map generated.
- Pixel-level or field level granularity
- On-the-fly presentation within user defined region.
- Geospatial query capability.
- Crop specific phenological information.
- Equal access and dissemination via spatially enabled Web-based systems.

Design Principles of Operational NCPMS

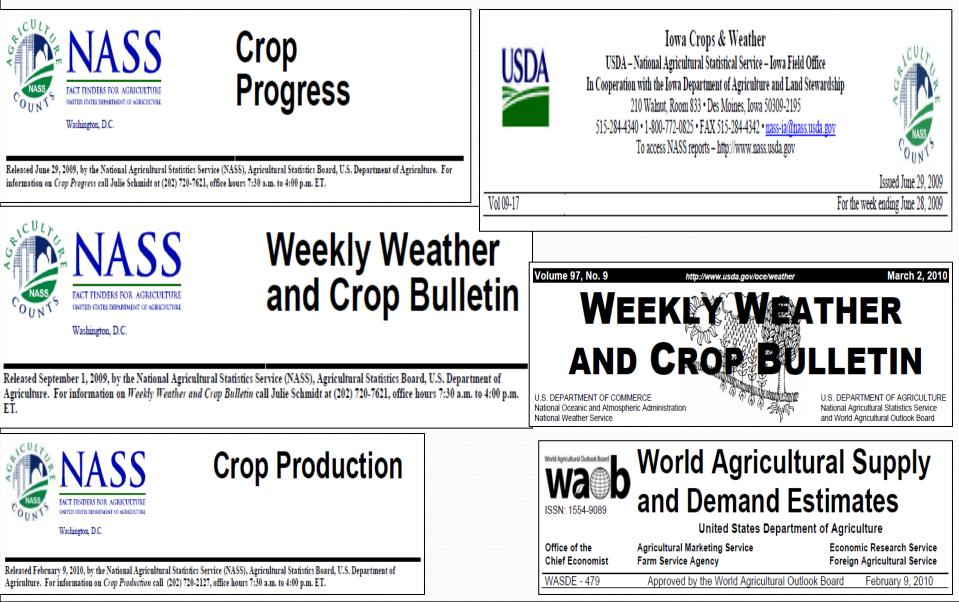
- The system should be able to assimilate and prepare Earth Observing data for use in agricultural crop growth monitoring and accuracy improving.
- The system should be capable of efficiently (timely) applying Earth Observing research results and data in crop growth development estimation.
- Advanced data mining algorithms and crop models should be implemented and can be plugged-in to readily take advantage of resources available in the system.
- Systematic approaches should be applied to
 - integrate data, services (Web computer software programs)
 - disseminate results through the Web
 - operate the national crop progress monitoring system in a standardcompliant virtual Web environment.

Data Dissemination & Visualization Example – Cropland Explorer

Remote Sensing-based Budget Initiative

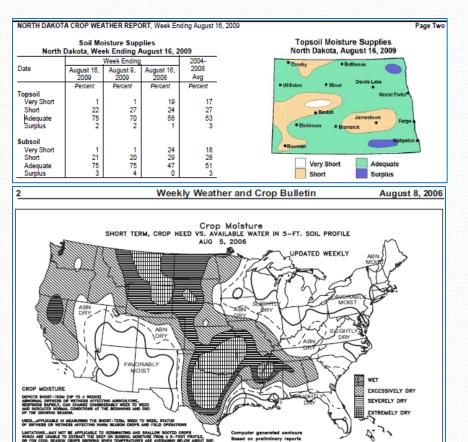
Providing Foundational Data Needs for Monitoring and Assessment of the Effects of Climate Change on U.S. Agriculture

> Geospatial Information Branch - Spatial Analysis Research Section (SARS), Fairfax, VA

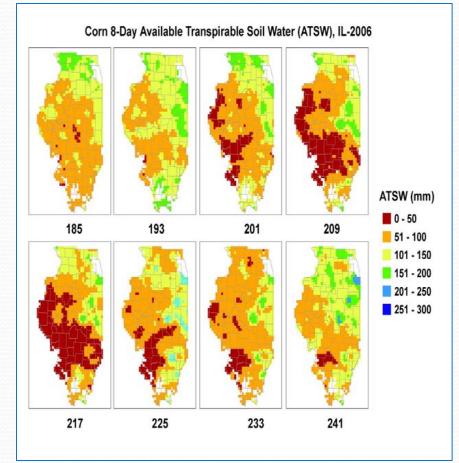

Areas of Work-NASS & WAOB

- Expansion & Improvements of Existing Efforts
 - Cropland Data Layers and Acreage Estimation
 - Yield Estimation for state and county levels
- New Research & Development Areas Crop Progress, Crop Condition, Soil Moisture, Disaster Monitoring and Assessments
- Create Digital GeoArchive
- Delivery of Products via Internet

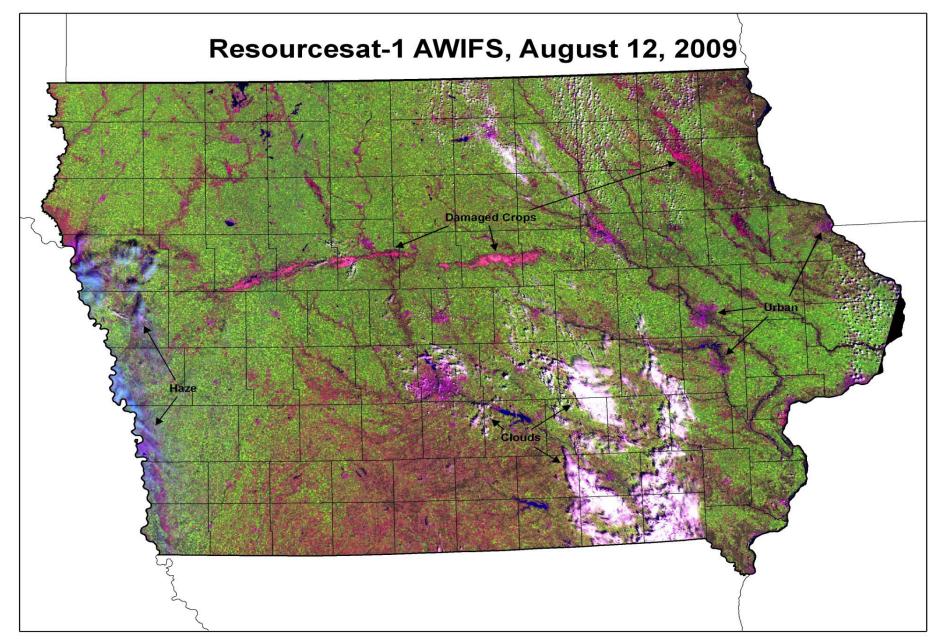
New Research Areas


- <u>Crop Progress</u> Provide quantitative assessments by stage of crop for each specific crop.
- <u>Crop Conditions</u> Quantitatively assess the amount of a specific crop in very poor, poor, fair, good, and excellent condition.
- <u>Soil Moisture</u> Monitoring and assessing Topsoil (surface to 6" depth) and Subsoil (>6"-- 3-4') moisture in categories similar to the following - Very short, Short, Adequate, Surplus.
- <u>Natural Disaster Monitoring & Assessment</u> timely monitoring & assessing significant events affecting crop area, conditions and yield

Official USDA Publications Impacted by the Initiative

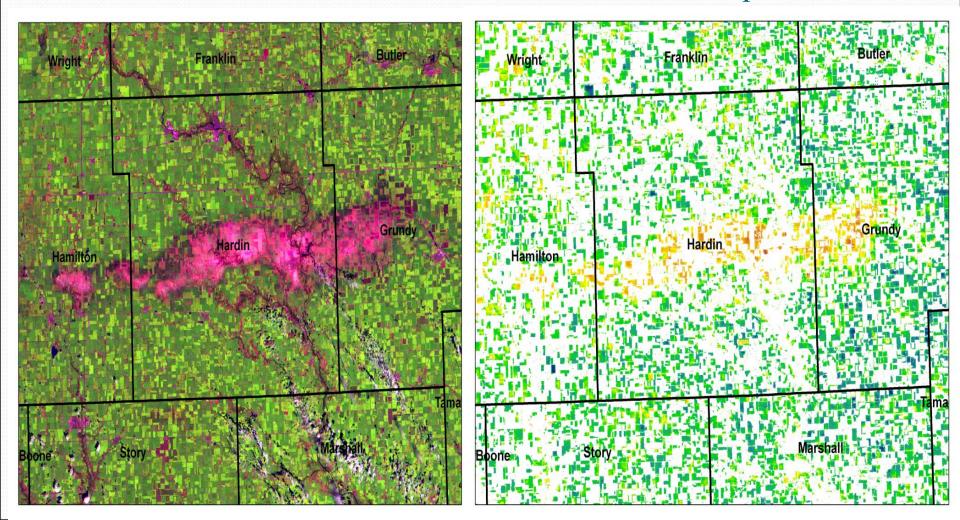

Depiction of Soil Moisture

Current > Subjective-based



IGAA/USDA JOINT AGRICULTURAL WEATHER FACILITY

Future > Science-based


Natural Disaster Assessments – Visual Reference

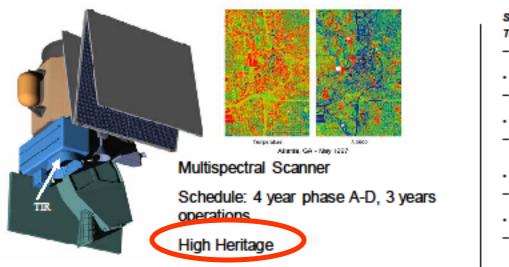
Natural Disaster Assessments -Prototype Crop Yield Map

Raw AWiFS

Yield Impact

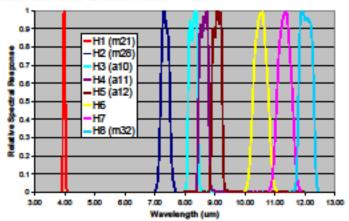
Major Issues Facing Our Program

NEAR TERM


- Sensors, sensors, sensors!
 - Without Landsat TM, 2010 would have been a huge setback for remote sensing in NASS!
 - AWiFS solar panel partial failure
 - Future Use & Access to SPOT VEG unsure
 - Resourcesat 2 launch, and priority for U.S. acquisitions?
 - Flow of imagery must be uninterrupted during growing season

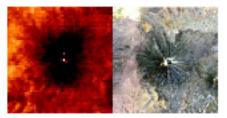
LONG TERM

- MRLI support to U.S. civilian agencies unclear.
- MODIS replacement (VIRS) a downgrade
- Operational needs have evolved beyond current strategies to support them.
- NASS will encourage USDA move to push for higher priority launch of HyspIRI sensor.


HyspIRI Thermal Infrared Multispectral VASA (TIR) Science Measurements

Measurement:

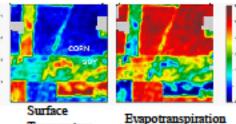
- 7 bands between 7.5-12 µm and 1 band at 4 um
- 60 m resolution, 5 days revisit
- Global land and snallow water


Science Questions:

TQ1. Volcanoes/Earthquakes (MA,FF)

- How can we help predict and mitigate earthquake and voicanic hazards through detection of transient thermal phenomena?
- TQ2. Wildfires (LG,DR)
- What is the impact of global blomass burning on the terrestrial blosphere and atmosphere, and how is this impact changing over time?
- TQ3. Water Use and Availability, (MA,RA)
- How is consumptive use of global freshwater supplies responding to changes in climate and demand, and what are the implications for sustainable management of water resources?
- TQ4. Urbanization/Human Health, (DQ.GG)
- How does urbanization affect the local, regional and global environment? Can we characterize this effect to help mitigate its impact on human health and welfare?
- TQ5. Earth surface composition and change, (AP, JC)
- What is the composition and temperature of the exposed surface of the Earth? How do these factors change over time and affect land use and habitability?

Andean volcano heats up


Urbanization

Volcanoes

Water Use and Availability

Temperature

2

HyspIRI compared with possible International Imaging Spectroscopy Missions

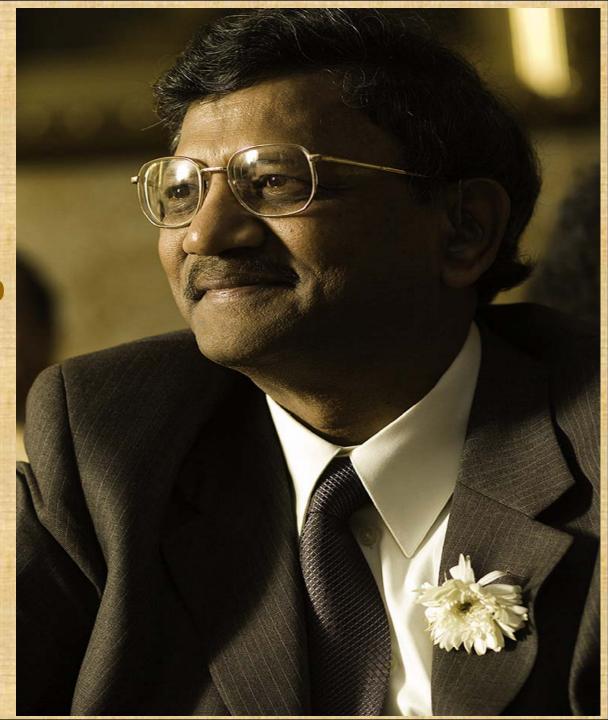
Only HyspIRI provides the full spectrum of data required to address climatecarbon cycle feedbacks articulated in the NRC Decadal Survey

HyspIRI Provides Seasonal and Annual Global Coverage that Uniquely Addresses Critical Gaps in Climate Research and Ecosystem Understanding.

>100 years for international mission to equal 1 year of HyspIRI

Country	Instrument	Swat h km	Pixel Size, m	Terrestrial Coverage in 19 days	Repeat interval, days	TIR capability
USA	HyspIRI	150	60	100%	19	8 TIR bands
Germany	EnMAP	30	30	<1%	-	NO
Italy	PRISMA	30-60	20-30	<1%	-	NO
Japan?	ALOS3	30	30	<1%	-	NO
India?	IMS Resource Sat-3	25	25	<1%	-	1 TIR band

US, HyspIRI: a full spectral range (380 to 2500 at 10 nm), high SNR, uniform, 60m spatial with 150 km swath imaging spectrometer and multiband thermal imager (8 band thermal imager from 3-12 µm).


Other countries are occasionally mentioned (China, South Africa, South Korea, etc.). All are proposing first generation small sample process/application missions with scattered terrestrial coverage and no TIR imager

Key Features of NASA HyspIRI

- 1) Hyperspectral: Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer - Full spectrum 380 to 2500 nm, 60 m resolution, with 150 km swath, repeat coverage 19 days
- 2) Multispectral Thermal InfraRed (TIR) Scanner 7 bands between 7.5-12 μm and 1 band at 4 μm, 60 m resolution, with 600 km swath, repeat coverage 5 days
- Potential for climate/water/carbon/land use monitoring/wildfires/droughts

Dr. Paul C. Doraiswamy April 7, 1948 - May 8, 2010 Friend and Colleague

