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Background and Research Questions

I By mandate, NASS produces monthly crop yield forecasts

I Official forecasts are consensus estimates of the Agricultural
Statistics Board (ASB)

I Recent research in support of the forecasting program

I Bayesian hierarchical models

I Combine data from multiple surveys and covariates

Goal: Which observable covariates are most relevant?
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Motivating Example: Forecasting in a Drought Year, 2012
Corn
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Speculative Region for Corn

Non−Spec

Speculative

USDA NASS Corn for Grain Estimation Program
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NASS Survey Data and Reporting Timeline
Objective Yield Survey (OYS)

I Field measurements at sampled plots (Aug.- Dec.)

Agricultural Yield Survey (AYS)

I Interview conducted monthly (Aug.-Nov.)

December Crops Acreage, Production, and Stocks Survey (APS)

I Interview conducted post-harvest
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Survey Estimates for 2004-2016
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Bayesian Hierarchical Model for Speculative Region

Notation
I µt–true yield

I yktm–observed yield

I k ∈ {O,A,Q}–survey index

I t ∈ {1, ...,T}–year index

I m ∈ {8, 9, 10, 11, 12}

Stage 1

yktm|µt ∼ indep N
(
µt + bkm, s

2
ktm + σ2

km

)
, (1)

k = O,A; m = 8, 9, 10, 11, 12

yQt |µt ∼ indep N
(
µt , s

2
Qt

)
(2)

Stage 2
µt ∼ indep N

(
z
′
tβ, σ

2
η

)
(3)
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Bayesian Hierarchical Model for Speculative Region

Diffuse prior distributions on data and process model parameters

I Θd ≡
(
bkm, σ

2
km)

I Θp ≡
(
β, σ2

η

)
Likelihood function–assuming conditional independence

[yO , yA, yQ |µt ,Θd ] =
∏

k∈{O,A,Q}

[yk |µt ,Θd ] (4)

Posterior distribution

[µt ,Θd ,Θp|yO , yA, yQ ] ∝
∏

k∈{O,A,Q}

[yk |µt ,Θd ][µ|Θp][Θd ][Θp] (5)
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Bayesian Hierarchical Model–State Level Yield

State-level counterparts indexed by j ∈ {1, 2, ..., J}

Unconstrained State Model–Define µt· ≡ (µt1, µt2, . . . , µtJ),

µt·|y ,Θd ,Θp ∼ indep MVN

(
vec

(
∆2j

∆1j

)
, diag

(
1

∆1j

))
(6)

Constrained State Model–Enforce constraint by conditioning
state vector µt· on µt =

∑
j wjµtj(

µt1, µt2, . . . , µt(J−1)
)
∼ MVN(µ̄, Σ̄) (7)

µtJ = µt −
1

wtJ

J−1∑
j=1

wtjµtj (8)
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Covariates for the j th State

µtj ∼ N
(
x
′
tjβj , σ

2
η

)
Current model for corn includes covariates:

I T: Trend

I P: Average July precipitation (NOAA)

I M: Average July temperature (NOAA)

I C: Crop condition rating, % rated excellent + good, Week 30
(NASS)

For the Speculative Region: covariate values are defined as
weighted averages of state-level covariate values
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Additional Covariate

I Early season model-forecasts

I Drought severity index

I D = %D3 + %D4

1

I Pool of available covariates: {T, P, M, C, D}
I Potential interactions

I Optimal set of covariates, parsimony

1
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Challenges in Selecting Appropriate Covariates

I Repeated measure of yield over five months

I Defining a pool of potential covariates
I Crop-specific knowledge
I Standard variable selection methods often point to different

sets of covariates
I Step-wise regression
I LASSO
I Spike-and-slab regression (Ishwaran and Rao, 2005; Kou and

Mallick, 1998), etc

I Example: {P,M}, {P,M,C,D}, {P,M,D} and {T,P,M,C,D} -
’best’ for the Spec-region in 2016

I ’Best’ sets of covariates depend on state, year and month
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Proposed Approach

1. Start with alternative sets of covariates that are selected most
frequently by traditional variable selection methods

2. Fit models for months from August to December and for years
2012, 2013, 2014, 2015 and 2016.

3. Criteria for decision: percent relative difference from Dec.
estimates

J =
(Aug. forecast - Dec. estimate)

Dec. estimate
× 100
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Model Comparison
I A total of 17 covariate combinations

I Subsets of {T,P,M,C,D,TD}
I Comparisons of models
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Variables with smallest percent relative differences

Covariate-sets

State Without Drought With Drought as
Main Effect

With Interaction
(D*T)

A - ’13, ’15 ’12, ’14, ’16
B ’13, ’14, ’15 ’16 ’12
C ’13 ’12, ’15, ’16 ’14
D ’12 ’13, ’14, ’15 ’16
E ’14 ’13, ’15, ’16 ’12
F ’12, ’14 ’13, ’15 ’16
G ’12, ’13 ’14, ’15, ’16 -
H ’14 ’13 ’12, ’15, ’16
I ’12, ’15 ’13, ’14, ’16 -
J ’15 ’13 ’12, ’14, ’16
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Model Comparison for State B
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Model Comparison for State I
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Model Comparison for the Spec-region

I DIC values for December 2016 corresponding to covariate-sets
{T,P,M,C}, {T,M,D} , {T,P,D} , {P,C, T*D} ,{T,P,C,D,T*D}
,{T,P,C,D} are 162.92, 163.06, 163.07, 162.93, 163.15 and 163.02
respectively. 19/25
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Conclusions

Investigated sensitivity of model forecasts to linear model
specification

I Inclusion of a ‘drought’ covariate improved early yield forecasts

I No one-size fits all set of covariates

I State-specific covariates may be considered

Contact:
habtamu.benecha@nass.usda.gov
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