Cleaning Out the Gutter: Identifying and Eliminating Deadwood from a Sampling Frame Using Trees

March 2018 Andrew J. Dau Gavin R. Corral, Jodie M. Sprague, Linda J. Young United States Department of Agriculture National Agricultural Statistics Service USDA/NASS

USDA NASS

Over 400 reports annually

Census of Agriculture every 5 years

• Reports driven by surveys

Surveys driven by sampling frames

 List frame

Maintaining the Sampling Frame

- Processes for adding to frame are on-going.
- Frames age/deteriorate over time.

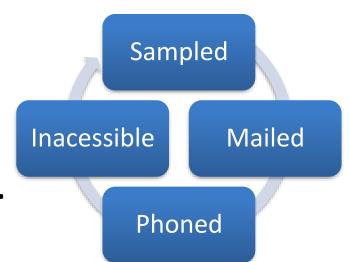
- Aging records create deadwood.
 - Records that are in business on the frame, but in reality are out of business

Bowling...and "Deadwood"

Source: www.ncaa.com

What's the Problem With Deadwood?

- Impacts on estimates.
- Higher inaccessible rate/ lower overall response rate.



- Can remain on sampling frame for long time.
- Costs → Inflated Samples

How to Identify Deadwood?

• Not easy to predict.

• Despite best efforts, never 100% accurate.

Can we build a predictive model?
 – 70+ of covariates available

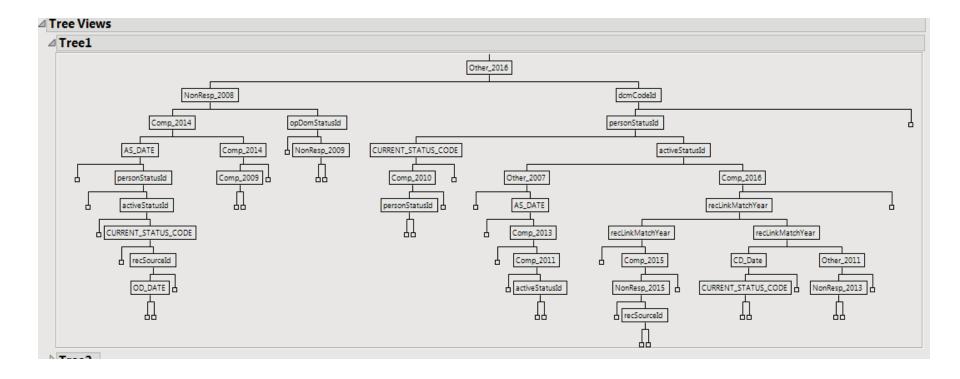
Goal

 Build a predictive model which can aid in identifying deadwood thereby maintaining an up-to-date list frame.

Classification and Regression Trees

- "Classification and regression trees are machine-learning methods for constructing prediction models from data." (Loh, 2011)
- Boosted Trees SAS JMP

The Model...An Example



Model Development

- Previous Survey Data
 - What kinds of operations were in-business?
 - What kinds of operations were out-of-business? (deadwood)

• Create binary indicator

• Model Comparison \rightarrow R², ROC, & Confusion Matrix

What's in Our Model?

- Most recent administrative linkage
- Most recent sampling frame data update
- Death Index
- Previous Response History
- Age
- Location
- Ag Census Response

Model Output

• The model creates propensity scores, indicating the likelihood of a record being deadwood.

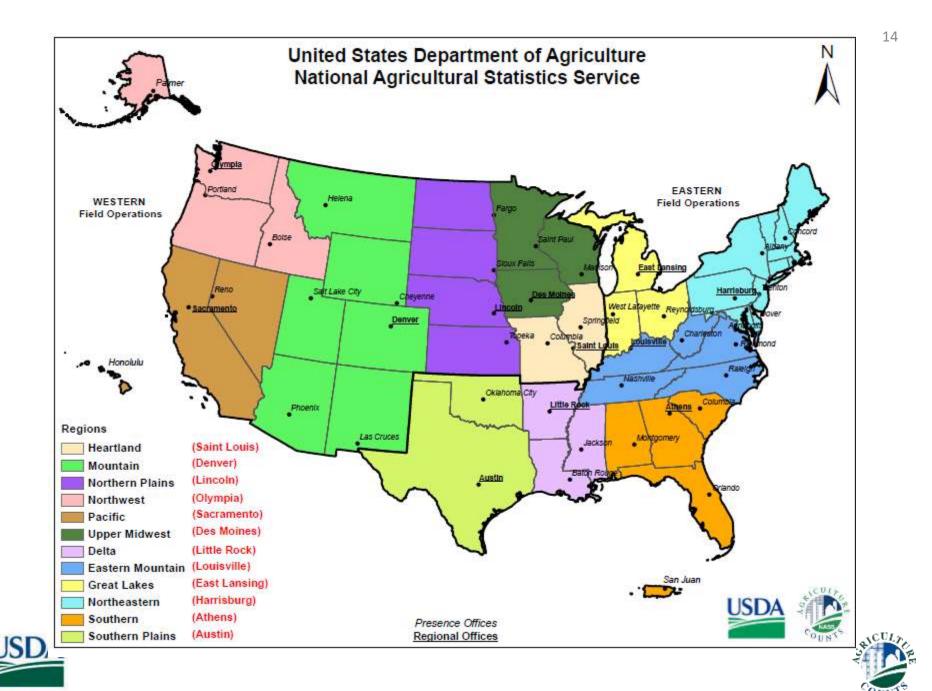
Prob(deadwood== 1)	Most Likely deadwood
0.0018551978	0
0.0060186538	0
0.9177965625	1
0.00984204	0
0.0114227775	0
0.0018398113	0

The Process

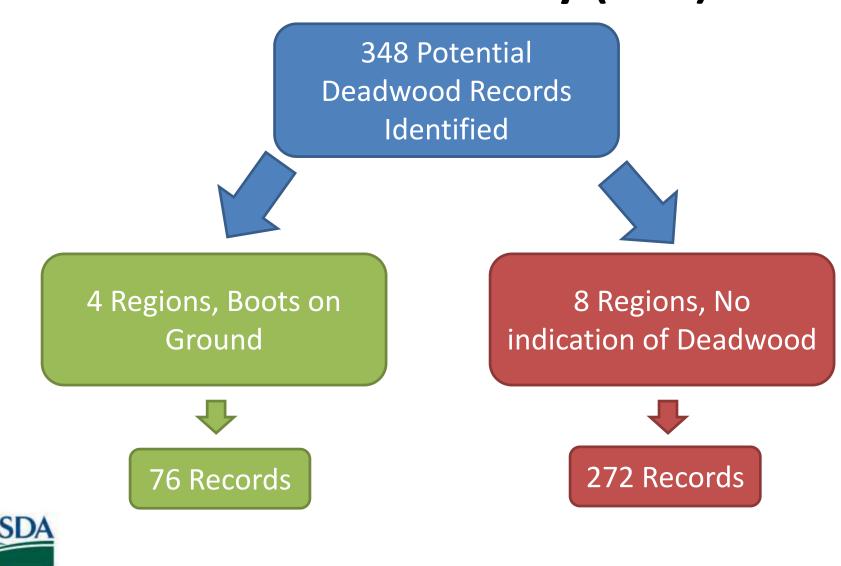
1. Predict likelihood of deadwood for each record in a survey sample.

2. Request face-to-face enumeration during survey process.

3. Verify operating status, complete survey.



September – Acreage, Production, and Stocks Survey (APS)



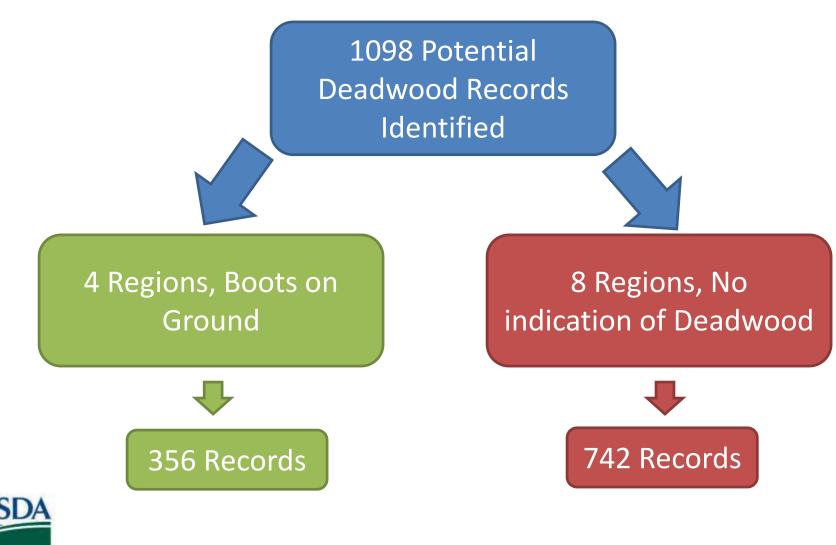
September APS Results

Records	Inaccessible	Deadwood
76	21%**	29%**
272	39%**	2%**
	76	76 21%**

*Proportions significantly different at .01 level

Are a lot of the inaccessible records in the non-targeted 8 regions actually deadwood?

Small Grain County Estimates Survey (Crops CE)



Small Grain CE Results

Region	Records	Inaccessible	Deadwood			
Targeted 4						
Regions	356	20%**	38%**			
Non-Targeted 8						
Regions	742	39%**	18%**			
*Proportions significantly different at 01 level						

*Proportions significantly different at .01 level

Once again, are a lot of the inaccessible records in the nontargeted 8 regions actually deadwood?

September Recap

 Targeted regions had higher out-of-business (deadwood) rates and lower inaccessible rates.

 All indications point towards expanding the boots on the ground data collection to all 12 regions.

Additional Results

Survey	Year	Deadwood Removed		Deadwood (%)	Inaccessible (%)
15 Surveys	2016-2018	3,442	8,779	39.21%	25.28%

Conclusion and Future Steps

• The model is accurately identifying a high rate of deadwood records.

 Continue process of identifying potential deadwood at a survey level.

 Approved Decision Memorandum – Jan 24, 2018

Acknowledgements

Response Rate Research Team and Deadwood Sub-team

- Dan Boostrom
- Gavin Corral
- Cheryl Ito
- Troy Marshall
- Barbara Rater

- Jodie Sprague
- Robyn Sirkis
- Gerald Tillman
- Linda Young

References

- Loh, Wei-Yin. "Classification and Regression Trees." *Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery* 1.1 (2011): 14-23. Web.
- *JMP: User Guide*. Cary, North Carolina.--: SAS Institute, 2005. Print.
- Hastie, Trevor, Robert Tibshirani, and Jerome H. Friedman. *The Elements of Statistical Learning Data Mining, Inference, and Prediction*. New York, NY: Springer, 2016.
- Corral, G. & Dau, A. (2017). *Identifying Out of Business Records on the NASS List Frame Using Boosted Regression Trees*. In JSM Proceedings.

