Optimal Stratification and Allocation for the June Agricultural Survey

Jonathan Lisic 1 $\,$ Hejian Sang 2 $\,$ Zhengyuan Zhu 2 $\,$ Stephanie Zimmer 2

¹United States Department of Agriculture National Agricultural Statistics Service, Washington, D.C. 20250, U.S.A.

²Department of Statistics, Iowa State University, Ames, IA 50011, U.S.A.

December 2nd, 2015

・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

"... providing timely, accurate, and useful statistics in service to U.S. agriculture."

Overview

This presentation will cover:

- Optimal stratification and allocation through simulated annealing under coefficient of variance and fixed sample size constraints.
- Application to simulated data.
- Application to the June Agricultural Survey.

Background

The June Agricultural Survey (JAS) is an annual area survey of agriculture over the contiguous 48 states.

- Stratification is performed on a state-by-state basis.
- Characteristics of interest include major commercial crop acreages (corn, soybeans, winter wheat, etc...).
- Sampling units (segments) are approximately one square mile in size (up to 268,518 segments in Texas).
- Characteristics are not necessarily correlated with each other.
- Target CVs are set for estimates, not administrative data.
- Highly correlated covariates available through remote sensing for crops.
- Fixed sample size.

Background

The current stratification is non-optimal:

- Strata are formed through univariate bounds on cultivated acreage within segments.
- Stratification is not based on the characteristics of interest.
- Optimal allocation is performed given a stratification.

How do you create an optimal design under quality and sample size constraints?

FCSM 2015

Prior Approaches

- The problem has been addressed by Dalenius and Hodges (1959) and Lavallée and Hidiroglou (1988), for the specific case of two stratum (one census and one non-census).
- Lavallée and Hidiroglou (1988) formed strata through univariate thresholding, e.g. establishments greater than 100 people.
- This work has been extended to multiple dimensions (see Benedetti and Piersimoni, 2012), but not to more strata.
- The multivariate extension initially forms boundaries through univariate thresholding each of the characteristics being sampled.
- This boundaries are relaxed through a sequence of exchanges.
- Require strong population asymmetry and the sample size cannot be fixed.

Approach

- Use existing, computationally efficient, machine learning methods to form an initial stratification.
- Use simulated annealing to both obtain an optimal sample allocation and provide a stratification aligned with our desired objective function.
- The approach taken does not require strong population asymmetry, but requires the sample size to be fixed (potentially empty feasible region).

Objective Function

How do you define an objective function if you have vector valued CVs, $\hat{c} = (\hat{c}_1, \hat{c}_2, \dots, \hat{c}_I)$, and targets $c = (c_1, c_2, \dots, c_I)$?

$$\hat{c}_j = rac{\sqrt{S_j^2}}{ar{y}_j}$$

where y is the set of PSUs with fully observed administrative data indexed by *j*.

Objective Function

We apply a penalized objective function, with penalty λ :

$$||\hat{c}||_{2}^{2} + \lambda ||\hat{c} - c||_{2+}^{2}$$
 (1)

- This objective function penalizes departures from the vector valued target CVs.
- The function $||x||_{2+} = \left(\sum_{j=1}^{J} x_j^2 \mathbb{I}_{x_j > 0}\right)^{1/2}$.
- This approach is "soft" in that it does not have "hard" CV constraints.

Simulated Annealing

- Simulated annealing is a stochastic optimization process that minimizes an objective function (possibly with constraints).
- Avoids the pitfalls of ending up in a local maxima by admitting non-optimal states.
- The general form of an algorithm to perform this stochastic process is:
 - 1. Start with initial state X_0 ;
 - 2. Randomly generate a candidate state Y_l , $l \ge 1$;
 - 3. If Y_l has a lower objective function than X_{l-1} , set $X_l = Y_l$;
 - 4. Else accept Y_l with probability $\rho = exp\{\Delta h_l/t(l)\}$ otherwise $X_l = X_{l-1}$ $(\Delta h_l = X_{l-1} - X_l)$;
 - 5. Go back to Step 2. until a threshold of iterations has been met.

Simulated Annealing (Example 1)

Simulated Annealing (Example 1)

Simulated Annealing

- 1. Start with initial stratification $\mathcal{I}^{(0)}$ and allocation η^{0} ;
- 2. Randomly generate a candidate state $\mathcal{I}_*^{(l)}$, $l \geq 1$;
- 3. Randomly generate a candidate state $\eta_*^{(l)}$ (possibly the same as the prior state);
- 4. If $\left(\mathcal{I}_{*}^{(l)}, \eta_{*}^{(l)}\right)$ has a lower objective function than $\left(\mathcal{I}^{(l-1)}, \eta^{(l-1)}\right)$, set $\left(\mathcal{I}^{(l)}, \eta^{(l)}\right) = \left(\mathcal{I}_{*}^{(l)} \eta_{*}^{(l)}\right)$;
- 5. Else accept $\mathcal{I}_{*}^{(l)}$ with probability $\rho = exp\{\Delta h_l/t(l)\}$ otherwise $\mathcal{I}^{(l)} = \mathcal{I}^{(l-1)}$;
- 6. Go back to Step 2 until a threshold of iterations has been met.

In this application $t(l) = \alpha(l+1)^{-1}$ where α is a tuning parameter.

	Index	Strata	х	у		
	1	1	2.3	72		
	2	1	2.5	55		
	3	1	2.1	42		
	4	1	2.8	61		
	5	1	2.9	68		
	6	2	4.9	58		
	7	2	5.1	44		
	8	2	4.2	51		
	9	2	2.8	48		
	10	2	4.3	52		
For sam	ple size	n = (3, 3)	5), λ =	$\overline{100}$, $\alpha = 1$,		
$\hat{c} = ($	0.082, 0	.068), <i>c</i> =	= (0.0	950, 0.100),		
objective function $= 3.307$.						

Simulated Annealing (Example 2, Iteration 0)

Simulated Annealing (Example 2, Iteration 1)

	Index	Strata	х	у		
	1	1	2.3	72		
	2	1	2.5	55		
	3	$1 \rightarrow 2$	2.1	42		
	4	1	2.8	61		
	5	1	2.9	68		
	6	2	4.9	58		
	7	2	5.1	44		
	8	2	4.2	51		
	9	2	2.8	48		
	10	2	4.3	52		
For sample size $n = (2, 4)$,						
$\hat{c} = (0.108, 0.050), \ c = (0.050, 0.100),$						
objective function = 5.919, and $\rho = 0.271$.						

æ

	Index	Strata	х	у		
	1	1	2.3	72		
	2	1	2.5	55		
	3	2	2.1	42		
	4	1	2.8	61		
	5	1	2.9	68		
	6	2	4.9	58		
	7	2	5.1	44		
	8	2	4.2	51		
	9	2 ightarrow 1	2.8	48		
	10	2	4.3	52		
For sample size $n = (2, 4)$,						
$\hat{c} = (0.092, 0.069)$, $c = (0.050, 0.100)$,						
and objective function $= 4.315 < 5.919$.						

Simulated Annealing (Example 2, Iteration 2)

Simulated Annealing

Why would this work?

- Each move is reversible, ensuring that for an infinitely long run time with exact precision the method will converge to the global minima.
- For large populations with small sample sizes, there is little change needed to retain optimal allocation for single PSU exchanges.
- Furthermore, if a large change in optimal allocation needs to occur after a single PSU exchange, that PSU probably shouldn't be moved.

Simulation

SD)A

A simulation was performed with two population sizes, $N{=}2{,}800$ and $N{=}280{,}000{,}$ both with sample size 60.

•
$$\frac{N_1}{N} = \frac{8}{28}$$
, $\mathbf{x}_1 \sim \mathcal{N}(\mu_1, \Sigma_1)$,
 $\mu_1 = (60, 10)$, and $\Sigma_1 = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$.
• $\frac{N_2}{N} = \frac{10}{28}$, $\mathbf{x}_2 \sim \mathcal{N}(\mu_2, \Sigma_2)$,
 $\mu_2 = (20, 10)$, and $\Sigma_2 = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$.
• $\frac{N_3}{N} = \frac{10}{28}$, $\mathbf{x}_3 \sim \mathcal{N}(\mu_3, \Sigma_3)$,
 $\mu_3 = (20, 30)$, and $\Sigma_3 = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$.

•
$$c = (0.020, 0.070).$$

イロト イポト イヨト イヨト 二日

Simulation (N=2,800)

Simulation (N=2,800)

	Univariate	K-means	Simulated
Target	Optimal X	Optimal Alloc.	Annealing
0.020	0.017	0.023	0.020
0.070	0.084	0.050	0.070

Table: Attained CVs for simulated population size of 2,800.

FCSM 2015

Simulation (N=2,800)

Run Time = 7 seconds for 1,000,000 iterations

Simulation (N=280,000)

Simulation (N=280,000)

	Univariate	K-means	Simulated
Target	Optimal X	Optimal Alloc.	Annealing
0.020	0.017	0.022	0.020
0.070	0.089	0.047	0.071

Table: Attained CVs for simulated population size of 280,000.

・ロト・雪ト・雪ト・雪 うへの

FCSM 2015

Simulation (N=280,000)

Run Time = 3.0 hours for 50,000,000 iterations

æ

Speed and Stability

That's a lot of iterations!

- Computational Speed:
 - Variances are saved and only updated on accepted exchanges.
 - Variances and updated using online methods.
- Computational Stability:
 - After a fixed number of iterations variances are recalculated from current strata assignments.

(日)

More Speed

Can we make this faster?

- Most successful exchanges occur near the initial boundaries between stratum from the applied machine-learning methods.
- Weighting can be applied to increase the number of exchanges near the boundaries relative to other locations.

・ロト・日本・ キャー キー うくの

June Agricultural Survey

This method was tested on South Dakota.

- Target crops included cultivated acreage, corn, soybeans, winter wheat and spring wheat.
- Survey using covariate data from 2013-2014.
- Each year-by-administrative variable pair is treated as a distinct administrative variable.
- 2015-2019 response is simulated using the 2008-2012 Cropland Data Layer(CDL) (see Boryan et al., 2011).
- ► The algorithm was run for 5,000,000 iterations.

June Agricultural Survey

Results:

	Cultivated	Corn	Soybeans	Winter Wht.	Spring Wht.
Target	0.01	0.05	0.05	0.19	0.16
2013	0.01	0.03	0.04	0.09	0.09
2014	0.01	0.02	0.04	0.07	0.07
*2015	0.02	0.04	0.05	0.10	0.10
*2016	0.02	0.04	0.05	0.10	0.10
*2017	0.02	0.04	0.05	0.10	0.12
*2018	0.02	0.04	0.04	0.10	0.11
*2019	0.02	0.04	0.04	0.12	0.12

*Using CDL data from prior years.

Open and Reproducible Research

R package available at https://github.com/jlisic/saAlloc.

FCSM 2015

Future Work

- Consider moving to more efficient methods such as differential evolution (see Day, 2009).
- Investigate adaptive methods for weighting.
- Consider alternatives to moving a single PSU, maybe hyperplanes?
- ► For JAS, understand the relationship between the administrative data CVs and the estimate CVs.
- ► For JAS, consider ways to predict future land cover.

Thank You

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

FCSM 2015

References I

Roberto Benedetti and Federica Piersimoni. Multivariate boundaries of a self representing stratum of large units in agricultural survey design. *Survey Research Methods*, 6(3): 125–135, 2012.

- Claire Boryan, Zhengwei Yang, Rick Mueller, and Mike Craig. Monitoring us agriculture: the us department of agriculture, national agricultural statistics service, cropland data layer program. *Geocarto International*, 26(5):341–358, 2011.
- T. Dalenius and J. L. Jr. Hodges. Minimum variance stratification. Journal of the American Statistical Association, 54:88–101, 1959.

References II

Charles D Day. Evolutionary algorithms for optimal sample design. In A paper presented at the 2009 Federal Committee on Statistical Methodology Conference, Washington, DC, 2009.

Pierre Lavallée and M Hidiroglou. On the stratification of skewed populations. *Survey Methodology*, 14(1):33–43, 1988.

