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Overview

This presentation will cover:
I Optimal stratification and allocation through simulated

annealing under coefficient of variance and fixed sample size
constraints.

I Application to simulated data.
I Application to the June Agricultural Survey.
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Background
The June Agricultural Survey (JAS) is an annual area survey of
agriculture over the contiguous 48 states.

I Stratification is performed on a state-by-state basis.
I Characteristics of interest include major commercial crop

acreages (corn, soybeans, winter wheat, etc. . . ).
I Sampling units (segments) are approximately one square mile

in size (up to 268,518 segments in Texas).
I Characteristics are not necessarily correlated with each other.
I Target CVs are set for estimates, not administrative data.
I Highly correlated covariates available through remote sensing

for crops.
I Fixed sample size.

FCSM 2015 3



Background

The current stratification is non-optimal:
I Strata are formed through univariate bounds on cultivated

acreage within segments.
I Stratification is not based on the characteristics of interest.
I Optimal allocation is performed given a stratification.
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The Problem

How do you create an optimal design under quality and sample size
constraints?
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Prior Approaches
I The problem has been addressed by Dalenius and Hodges

(1959) and Lavallée and Hidiroglou (1988), for the specific
case of two stratum (one census and one non-census).

I Lavallée and Hidiroglou (1988) formed strata through
univariate thresholding, e.g. establishments greater than 100
people.

I This work has been extended to multiple dimensions (see
Benedetti and Piersimoni, 2012), but not to more strata.

I The multivariate extension initially forms boundaries through
univariate thresholding each of the characteristics being
sampled.

I This boundaries are relaxed through a sequence of exchanges.
I Require strong population asymmetry and the sample size

cannot be fixed.
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Approach

I Use existing, computationally efficient, machine learning
methods to form an initial stratification.

I Use simulated annealing to both obtain an optimal sample
allocation and provide a stratification aligned with our desired
objective function.

I The approach taken does not require strong population
asymmetry, but requires the sample size to be fixed
(potentially empty feasible region).
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Objective Function

How do you define an objective function if you have vector valued
CVs, ĉ = (ĉ1, ĉ2, . . . , ĉJ), and targets c = (c1, c2, . . . , cJ)?

ĉj =

√
S2

j

ȳj

where y is the set of PSUs with fully observed administrative data
indexed by j .
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Objective Function

We apply a penalized objective function, with penalty λ:

||ĉ||22 + λ||ĉ − c||22+ (1)

I This objective function penalizes departures from the vector
valued target CVs.

I The function ||x ||2+ =
(∑J

j=1 x2
j Ixj >0

)1/2
.

I This approach is “soft” in that it does not have “hard” CV
constraints.
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Simulated Annealing
I Simulated annealing is a stochastic optimization process that

minimizes an objective function (possibly with constraints).
I Avoids the pitfalls of ending up in a local maxima by

admitting non-optimal states.
I The general form of an algorithm to perform this stochastic

process is:
1. Start with initial state X0;
2. Randomly generate a candidate state Yl , l ≥ 1;
3. If Yl has a lower objective function than Xl−1, set Xl = Yl ;
4. Else accept Yl with probability ρ = exp{∆hl/t(l)} otherwise

Xl = Xl−1
(∆hl = Xl−1 − Xl ) ;

5. Go back to Step 2. until a threshold of iterations has been met.
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Simulated Annealing (Example 1)
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Simulated Annealing (Example 1)
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Simulated Annealing

1. Start with initial stratification I(0) and allocation η0;
2. Randomly generate a candidate state I(l)

∗ , l ≥ 1;
3. Randomly generate a candidate state η(l)

∗ (possibly the same
as the prior state);

4. If
(
I(l)

∗ , η
(l)
∗
)

has a lower objective function than(
I(l−1), η(l−1)

)
, set

(
I(l), η(l)

)
=
(
I(l)

∗ η
(l)
∗
)

;

5. Else accept I(l)
∗ with probability ρ = exp{∆hl/t(l)} otherwise

I(l) = I(l−1);
6. Go back to Step 2 until a threshold of iterations has been met.

In this application t(l) = α(l + 1)−1 where α is a tuning parameter.

FCSM 2015 13



Simulated Annealing (Example 2, Iteration 0)
Index Strata x y
1 1 2.3 72
2 1 2.5 55
3 1 2.1 42
4 1 2.8 61
5 1 2.9 68
6 2 4.9 58
7 2 5.1 44
8 2 4.2 51
9 2 2.8 48
10 2 4.3 52

For sample size n = (3, 3), λ = 100, α = 1,
ĉ = (0.082, 0.068), c = (0.050, 0.100),

objective function = 3.307.
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Simulated Annealing (Example 2, Iteration 1)
Index Strata x y
1 1 2.3 72
2 1 2.5 55
3 1→ 2 2.1 42
4 1 2.8 61
5 1 2.9 68
6 2 4.9 58
7 2 5.1 44
8 2 4.2 51
9 2 2.8 48
10 2 4.3 52

For sample size n = (2, 4),
ĉ = (0.108, 0.050), c = (0.050, 0.100),

objective function = 5.919, and ρ = 0.271.
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Simulated Annealing (Example 2, Iteration 2)
Index Strata x y
1 1 2.3 72
2 1 2.5 55
3 2 2.1 42
4 1 2.8 61
5 1 2.9 68
6 2 4.9 58
7 2 5.1 44
8 2 4.2 51
9 2→ 1 2.8 48
10 2 4.3 52

For sample size n = (2, 4),
ĉ = (0.092, 0.069), c = (0.050, 0.100),

and objective function = 4.315 < 5.919.
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Simulated Annealing

Why would this work?
I Each move is reversible, ensuring that for an infinitely long

run time with exact precision the method will converge to the
global minima.

I For large populations with small sample sizes, there is little
change needed to retain optimal allocation for single PSU
exchanges.

I Furthermore, if a large change in optimal allocation needs to
occur after a single PSU exchange, that PSU probably
shouldn’t be moved.
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Simulation
A simulation was performed with two population sizes, N=2,800
and N=280,000, both with sample size 60.

I N1
N = 8

28 , x1 ∼ N (µ1,Σ1),

µ1 = (60, 10), and Σ1 =
(

6 0
0 6

)
.

I N2
N = 10

28 , x2 ∼ N (µ2,Σ2),

µ2 = (20, 10), and Σ2 =
(

6 0
0 6

)
.

I N3
N = 10

28 , x3 ∼ N (µ3,Σ3),

µ3 = (20, 30), and Σ3 =
(

6 0
0 6

)
.

I λ = 10, 000.
I c = (0.020, 0.070).
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Simulation (N=2,800)
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Simulation (N=2,800)

Univariate K-means Simulated
Target Optimal X Optimal Alloc. Annealing
0.020 0.017 0.023 0.020
0.070 0.084 0.050 0.070

Table: Attained CVs for simulated population size of 2,800.
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Simulation (N=2,800)

Run Time = 7 seconds for 1,000,000 iterations
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Simulation (N=280,000)
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Simulation (N=280,000)

Univariate K-means Simulated
Target Optimal X Optimal Alloc. Annealing
0.020 0.017 0.022 0.020
0.070 0.089 0.047 0.071

Table: Attained CVs for simulated population size of 280,000.
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Simulation (N=280,000)

Run Time = 3.0 hours for 50,000,000 iterations
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Speed and Stability

That’s a lot of iterations!
I Computational Speed:

I Variances are saved and only updated on accepted exchanges.
I Variances and updated using online methods.

I Computational Stability:
I After a fixed number of iterations variances are recalculated

from current strata assignments.
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More Speed

Can we make this faster?
I Most successful exchanges occur near the initial boundaries

between stratum from the applied machine-learning methods.
I Weighting can be applied to increase the number of

exchanges near the boundaries relative to other locations.
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June Agricultural Survey

This method was tested on South Dakota.
I Target crops included cultivated acreage, corn, soybeans,

winter wheat and spring wheat.
I Survey using covariate data from 2013-2014.
I Each year-by-administrative variable pair is treated as a

distinct administrative variable.
I 2015-2019 response is simulated using the 2008-2012

Cropland Data Layer(CDL) (see Boryan et al., 2011).
I The algorithm was run for 5,000,000 iterations.
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June Agricultural Survey
Results:

Cultivated Corn Soybeans Winter Wht. Spring Wht.
Target 0.01 0.05 0.05 0.19 0.16

2013 0.01 0.03 0.04 0.09 0.09
2014 0.01 0.02 0.04 0.07 0.07

*2015 0.02 0.04 0.05 0.10 0.10
*2016 0.02 0.04 0.05 0.10 0.10
*2017 0.02 0.04 0.05 0.10 0.12
*2018 0.02 0.04 0.04 0.10 0.11
*2019 0.02 0.04 0.04 0.12 0.12

*Using CDL data from prior years.
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Open and Reproducible Research

R package available at https://github.com/jlisic/saAlloc.

FCSM 2015 29



Future Work

I Consider moving to more efficient methods such as differential
evolution (see Day, 2009).

I Investigate adaptive methods for weighting.
I Consider alternatives to moving a single PSU, maybe

hyperplanes?
I For JAS, understand the relationship between the

administrative data CVs and the estimate CVs.
I For JAS, consider ways to predict future land cover.
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Thank You
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