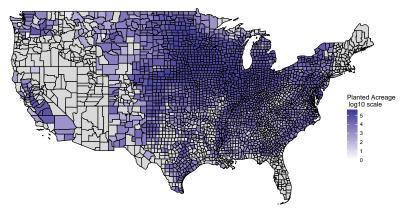
### On Increasing the Number of County-Level Crop Estimates

Andreea L. Erciulescu<sup>1,2</sup>, Nathan Cruze<sup>2</sup>, Habtamu Benecha<sup>2</sup>, Valbona Bejleri<sup>2</sup>, Balgobin Nandram<sup>2,3</sup>

1 National Institute of Statistical Sciences

2. USDA National Agricultural Statistics Service 3. Worcester Polytechnic Institute


Federal Committee on Statistical Methodology Research and Policy Conference March 8, 2018





### Motivation: County-Level Planted Acreage Estimates

#### NASS COUNTY AGRICULTURAL PRODUCTION SURVEYS (CAPS) ESTIMATES: CORN, 2015



- ▶ 2837 counties in 36 sampled states
- ▶ 2426 in-sample counties and 411 not-in-sample counties

NASS crop estimates are used in the process of setting payments for some agricultural programs!





#### Motivation: Questions

- Are there ancillary sources that indicate corn planting activity in the 411 not-in-sample counties?
  - list-based survey; changes in planting practices
  - each survey response includes information on entire farm or ranch, all commodities
  - our approach: explore commodity-specific administrative data sources
- How to combine survey and auxiliary data to produce substate-level\* estimates and measures of uncertainty for in-sample and not-in-sample domains?
  - small sample sizes (number of positive reports used to produce the survey summary)
  - our approach: small area models

\*county-level and (agricultural statistics) district-level, where a district is represented by a set of neighboring counties within a state





Using Information from Multiple Data Sources

Table 1: Number of Counties with Corn Planting Activity, 2015

| Data Source (USDA)                                        | Data Collection Method                     | Number of Counties |
|-----------------------------------------------------------|--------------------------------------------|--------------------|
| NASS CAPS                                                 | Probability Sample                         | 2426               |
| Farm Service Agency (FSA)<br>Risk Management Agency (RMA) | Volunteer Reporting<br>Volunteer Reporting | 2398<br>2232       |

Define Set of Counties with Corn Planting Activity

 $\blacktriangleright$  combine NASS CAPS, FSA and RMA ightarrow 2510 counties





# Borrowing Information from Multiple Data Sources 2015 Corn Planted Acreage (PL); County-Level

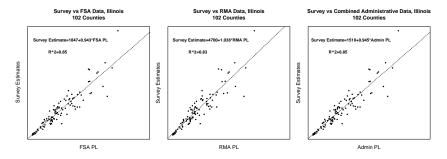
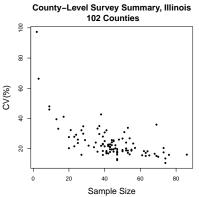



Table 2: Nationwide Summaries


|       | FSA PL RMA PL |        |         | Admin PL |          |         |         |        |          |
|-------|---------------|--------|---------|----------|----------|---------|---------|--------|----------|
|       | 1st Qu.       | Median | 3rd Qu. | 1st Qu.  | Med ia n | 3rd Qu. | 1st Qu. | Median | 3 rd Qu. |
| $R^2$ | 0.82          | 0.89   | 0.92    | 0.76     | 0.86     | 0.91    | 0.83    | 0.89   | 0.92     |

Admin PL: combine FSA and RMA, with preference for maximum planted acreage, available for 2401 counties

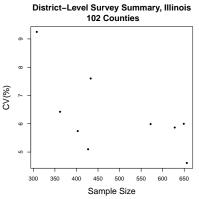




## County-Level Relative Variability of Survey Estimates 2015 Corn Planted Acreage



Nationwide summaries


- sample size within a county: [1,191]; median 18
- county-level CV(%): [0.07, 107.66]; median 31.94



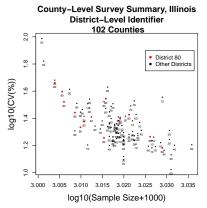


"... providing timely, accurate, and useful statistics in service to U.S. agriculture."

## District-Level Relative Variability of Survey Estimates 2015 Corn Planted Acreage



Nationwide summaries


- sample size within a district: [1,993]; median 145
- district-level CV(%): [3.27, 100.70]; median 11.84





". . . providing timely, accurate, and useful statistics in service to U.S. agriculture."

## Borrowing Information Across Counties and Districts 2015 Corn Planted Acreage



Nationwide summaries

- number of districts within a state: [3, 15]; median 9
- number of counties within a district: [1,32]; median 8





". . . providing timely, accurate, and useful statistics in service to U.S. agriculture."

#### Our Approach: Subarea-Level Model

Linkage model

$$\begin{array}{lcl} \theta_{ij}|(\boldsymbol{\beta},\sigma_{u}^{2}) & \sim & \boldsymbol{N}(\mathbf{x}_{ij}^{'}\boldsymbol{\beta}+\mathbf{v}_{i},\sigma_{u}^{2}) \\ \mathbf{v}_{i}|\sigma_{v}^{2} & \sim & \boldsymbol{N}(0,\sigma_{v}^{2}) \end{array}$$

Sampling model

$$\hat{ heta}_{ij} | ( heta_{ij}, \hat{\sigma}^2_{ij}) ~\sim~ {\sf N}( heta_{ij}, \hat{\sigma}^2_{ij})$$

Prior distributions

$$\pi(\boldsymbol{\beta}, \sigma_u^2, \sigma_v^2) = \pi(\boldsymbol{\beta})\pi(\sigma_u^2)\pi(\sigma_v^2)$$

i = 1,...,m, areas (districts) in a given state
j = 1,...,n<sup>c</sup><sub>i</sub>, subareas (counties) in area (district) i
∑<sup>m</sup><sub>i=1</sub> n<sup>c</sup><sub>i</sub> = n<sup>c</sup>, number of counties in a given state
θ<sub>ij</sub>, county-level parameter of interest
(θ̂<sub>ij</sub>, ô<sup>2</sup><sub>ij</sub>), survey summary
x<sub>ij</sub> = (1, x<sub>ij</sub>)
x<sub>ii</sub>, Admin PL





#### Modeling Strategies with Incomplete Data

Missing  $x_{ij}$ , but available  $\hat{\theta}_{ij}$ 

- impute x<sub>ij</sub> using the administrative data available for a similar county in the given state
  - $\blacktriangleright$  absolute-value norm, applied to the corresponding  $\hat{ heta}_{ij}$ 's

Available  $(\hat{\theta}_{ij}, \hat{\sigma}^2_{ij}, x_{ij})$ 

- posterior summaries using R MCMC iterates (after burn-in and thinning); r = 1,..., R
  - parameter iterates:  $\boldsymbol{\beta}_r, \sigma^2_{u,r}, \sigma^2_{v,r}$
  - county-level iterates: θ<sub>ij,r</sub>
  - district-level iterates:  $\theta_{i,r} := \sum_{j=1}^{n_i^c} \theta_{ij,r}$

Missing  $(\hat{\theta}_{ij}, \hat{\sigma}_{ij}^2)$ , but  $x_{ij}$  available

► prediction using the linkage model:  $\theta_{ij,r} \sim N(\mathbf{x}'_{ij}\beta_r + \mathbf{v}_{i,r}, \sigma^2_{u,r})$ 





#### Benchmarking Constraint

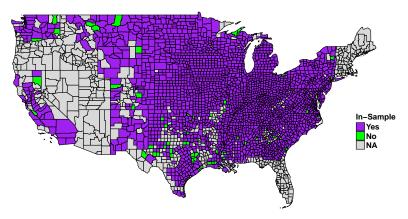
For a prepublished state-level value, a

- $\sum_{i,j}^{n^{c*}} \tilde{\theta}_{ij}^B = a, n^{c*}$  is the total number of counties
- ▶ ratio adjustment, applied at the (MCMC) iteration-level

$$\theta_{ij,r}^{\mathcal{B}} := \theta_{ij,r} \times \mathbf{a} \times \left( \sum_{k=1}^{m} \sum_{l=1}^{n_k^{\varepsilon*}} \theta_{kl,r} \right)^{-1},$$

 $n_k^{c*}$  is the total number of counties in district k, k = 1, ..., m.

Discussion:


defining the set of counties n<sup>c\*</sup>



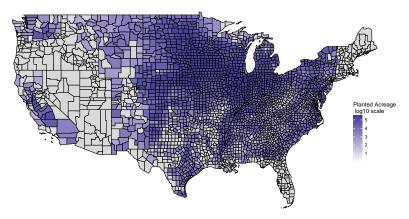


Results

#### MODELING STRATEGY



▶ 2423 in-sample counties and 70 not-in-sample counties



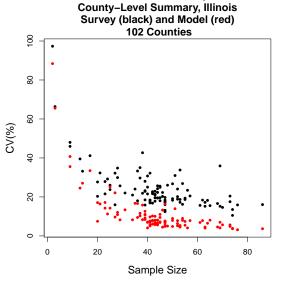



. . . providing timely, accurate, and useful statistics in service to U.S. agriculture."

### Results: Increased Number of County-Level Estimates

MODEL-BASED PREDICTIONS: CORN, 2015




- model-based predictions available for 2493 counties
- ▶ RECALL: survey estimates available for 2426 counties

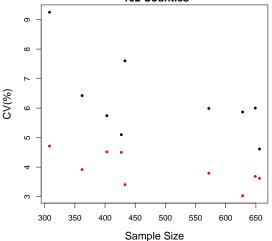




". . . providing timely, accurate, and useful statistics in service to U.S. agriculture."

#### Results: Decreased Relative Variability










#### Results: Decreased Relative Variability

District-Level Summary, Illinois Survey (black) and Model (red) 102 Counties







". . . providing timely, accurate, and useful statistics in service to U.S. agriculture."

Results

Table 3: CV(%) summaries for counties/districts with available survey estimates

| Leve     | Source | 1st Qu. | Median | 3rd Qu. |
|----------|--------|---------|--------|---------|
| County   | Survey | 21.12   | 31.93  | 55.52   |
|          | Model  | 5.90    | 12.31  | 37.88   |
| District | Survey | 7.41    | 11.84  | 21.06   |
|          | Model  | 3.43    | 5.15   | 11.69   |

#### Discussion

- publication standard for official statistics
  - 2423 counties with available survey estimates:
    - $\blacktriangleright~1125$  survey CVs  $\leq 30\%$  versus 1700 model CVs  $\leq 30\%$
  - 2493 counties with available model-based predictions:
    - ▶ 1703 model CVs  $\leq$  30%
- 1622 counties published, under the current NASS publication standard; NASS QuickStats





### Summary and Future Work

Summary

- ► model-based county-level and district-level predictions are produced, incorporating survey and administrative data ⇒ increased number of county-level estimates
  - $\blacktriangleright$  Texas: largest number of not-in-sample predictions, 20 out of 163 counties, accounting for  ${\sim}0.63\%$  of planted acreage in the state
- reduction in precision and relative precision; model versus survey
  - $\blacktriangleright$  2 72% / 19 74% in most of the county-level SE / CV
  - $\blacktriangleright$  18 61% / 28 66% in most of the district-level SE / CV

Future work

- $\blacktriangleright$  additional data sources  $\Rightarrow$  revised set of counties to be estimated
- model specification; normality assumption
- quality of different data sources; imputation strategies
- publication standard





## Thank you!

aerciulescu@niss.org





"... providing timely, accurate, and useful statistics in service to U.S. agriculture."

#### References

- Bell J., and Barboza W. (2012), "Evaluation of Using CVs as a Publication Standard." Paper presented at the Fourth International Conference on Establishment Surveys, Montreal, Quebec, Canada, June 11-14.
- Cruze N.B., Erciulescu A.L., Nandram B., Barboza W.J., Young L.J. (2016), "Developments in Model-Based Estimation of County-Level Agricultural Estimates." ICES V Proceedings. Alexandria, VA: American Statistical Association.
- Erciulescu A.L., Cruze N.B., Nandram B. (2016), "Model-Based County-Level Crop Estimates Incorporating Auxiliary Sources of Information." JSM Proceedings. Survey Research Methods Section. Alexandria, VA: American Statistical Association, 3591-3605.
- Fay R.E. and Herriot R.A. (1979), "Estimates of income for small places: an application of James-Stein procedures to census data," *Journal of the American Statistical Association*, 74, 269-277.
- Fuller W.A. and Goyeneche J.J. (1998), "Estimation of the state variance component," Unpublished manuscript.
- Marker D. (2016), "Presentation to National Academy of Sciences Panel on Crop Estimates," Unpublished presentation. National Academy of Sciences report available at https://www.nap.edu/catalog/24892/improving-crop-estimates-by-integrating-multiple-data-sources.
- Rao J.N.K. and Molina I. (2015), "Small Area Estimation," Wiley Series in Survey Methodology.
- Torabi M. and Rao J.N.K. (2014), "On small area estimation under a sub-area level model," Journal of Multivariate Analysis, 127, 36-55.
- USDA FSA (2014), "Farm Bill Home," http://www.fsa.usda.gov/programs-and-services/farm-bill/index.
- USDA NASS (2016a), "Publications: Agricultural Statistics, Annual," https://www.nass.usda.gov/Publications/Ag Statistics.
- USDA NASS (2016b), "CropScape and Cropland Data Layer," https://www.nass.usda.gov/Research and Science/Cropland/SARS1a.php.
- USDA NASS (2016c), "Quick Stats," https://quickstats.nass.usda.gov/.
- USDA NASS (2017a), "Crop Production Annual Summary," http://usda.mannlib.cornell.edu/ MannUsda/viewDocumentInfo.do?documentID=1047.
- USDA NASS (2017b), "Historical Track Record Crop Production," http://usda.mannlib.cornell.edu/ MannUsda/viewDocumentInfo.do?documentID=1593
- USDA RMA (2014), "THE FARM BILL," http://www.rma.usda.gov/news/currentissues/farmbill/.





#### Results

#### Table 4: SE summaries for counties/districts with available survey estimates

| Level    | Source | 1st Qu  | Median  | 3rd Qu.  |
|----------|--------|---------|---------|----------|
| County   | Survey | 640.50  | 2723.00 | 9464.00  |
|          | Model  | 428.70  | 1157.00 | 2848.00  |
| District | Survey | 4238.00 | 9242.00 | 31010.00 |
|          | Model  | 2106.00 | 5052.00 | 12360.00 |





### Internal Model Validation Posterior Predictive Checks

- ▶ Posterior samples:  $(\beta^r, (\sigma_v^2)^r, (\sigma_u^2)^r), r = 1, ..., R$
- ▶ Draw replicates (θ<sup>t</sup><sub>ij</sub>, y<sup>t</sup><sub>ij</sub>), t = 1, ..., T (every 10<sup>th</sup> sample from the R iterates):

$$\begin{array}{lll} \mathbf{v}_i^t & \sim & \mathcal{N}(\mathbf{0}, (\sigma_v^2)^t) \\ \theta_{ij}^t & \sim & \mathcal{N}(\mathbf{x}_{ij}'\beta^t + \mathbf{v}_i^t, (\sigma_u^2)^t) \\ \mathbf{y}_{ij}^t & \sim & \mathcal{N}(\theta_{ij}^t, (\hat{\sigma}_{ij}^2)^t) \end{array}$$

► For a given test statistic, i.e. identity function,

$$p = T^{-1} \sum_{t=1}^{T} I\left(T(y_{ij}^t) > T(\hat{\theta}_{ij})\right)$$





### External Model Validation NASS Official Values

- Agricultural Statistics Board and Census of Agriculture
- Five years: 2012-2016
- Multiple commodities: corn, soybeans, sorghum, wheat
- Comparison metrics: (absolute) (relative) differences, credible intervals coverage



